Chinese Medical E-ournals Database

Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition) ›› 2017, Vol. 13 ›› Issue (02): 222 -225. doi: 10.3877/cma.j.issn.1673-5250.2017.02.019

Special Issue:

Review

Research progress of interleukin-17 and -35 in pre-eclampsia

Qi Peng1   

  1. 1. Department of Obstetrics and Gynecology, Clinical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China; Department of Obstetrics and Gynecology, Jiangdu District People′s Hospital, Jiangdu 225200, Jiangsu Province, China
    2. Department of Obstetrics and Gynecology, Clinical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
  • Received:2016-11-06 Revised:2017-01-11 Published:2017-04-01
  • About author:
    Corresponding author: Lu Dan, Email:

Pre-eclampsia (PE) is one of important disorders that significantly contribute to the enhancement of maternal and neonatal mortality. The causes and mechanisms of PE are not fully clarified so far. In recent years, it has been shown by studies that PE is closely related to the imbalance of maternal-fetal immune tolerance. The expression of interleukin (IL)-17 is up-regulated, while the expression of IL-35 is down-regulated, and the immune balance of helper T cell (Th) 17 and regulatory T cell (Treg) is deviated in PE. The structures and functions of IL-17 and IL-35, and roles in the nosogenesis of PE are reviewed in this paper.

[1]
谢幸, 苟文丽. 妇产科学. 8版[M]. 北京: 人民卫生出版社, 2013: 64-71.
[2]
Laresgoiti-Servitje E. A leading role for the immune system in the pathophysiology of preeclampsia[J]. J Leukoc Biol, 2013, 94(2): 247-257.
[3]
Darmochwal-Kolarz D, Kludka-Sternik M, Tabarkiewicz J, et al. The predominance of Th17 lymphocytes and decreased number and function of Treg cells in preeclampsia[J]. J Reprod Immunol, 2012, 93(2): 75-81.
[4]
Yao Z, Fanslow WC, Seldin MF, et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor[J]. Immunity, 1995, 3(6): 811-821.
[5]
Gu C, Wu L, Li X. IL-17 family: cytokines, receptors and signaling[J]. Cytokine, 2013, 64(2): 477-485.
[6]
Cornelius DC, Hogg JP, Scott J, et al. Administration of interleukin-17 soluble receptor C suppresses TH17 cells, oxidative stress, and hypertension in response to placental ischemia during pregnancy[J]. Hypertension, 2013, 62(6): 1068-1073.
[7]
Cornelius DC, Lamarca B. TH17- and IL-17- mediated autoantibodies and placental oxidative stress play a role in the pathophysiology of pre-eclampsia[J]. Minerva Ginecol, 2014, 66(3): 243-249.
[8]
Saifi B, Rezaee SA, Tajik N, et al. Th17 cells and related cytokines in unexplained recurrent spontaneous miscarriage at the implantation window[J]. Reprod Biomed Online, 2014, 29(4): 481-489.
[9]
汪勤, 赵春辉, 夏良萍, 等. 重度子痫前期患者外周血Th17和Treg细胞及相关细胞因子的表达及意义[J]. 检验医学与临床, 2015, 12(20): 3040-3043.
[10]
Toldi G, Rigó J Jr, Stenczer B, et al. Increased prevalence of IL-17-producing peripheral blood lymphocytes in pre-eclampsia[J]. Am J Reprod Immunol, 2011, 66(3): 223-229.
[11]
Devergne O, Birkenbach M, Kieff E. Epstein-Barr virus-induced gene 3 and the p35 subunit of interleukin 12 form a novel heterodimeric hematopoietin[J]. Proc Natl Acad Sci USA, 1997, 94(22): 12041-12046.
[12]
Collison LW, Workman CJ, Kuo TT, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function[J]. Nature, 2007, 450(7169): 566-569.
[13]
Niedbala W, Wei XQ, Cai B, et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells[J]. Eur J Immunol, 2007, 37(11): 3021-3029.
[14]
Olson BM, Sullivan JA, Burlingham WJ. Interleukin 35: a key mediator of suppression and the propagation of infectious tolerance[J]. Front Immunol, 2013, 4: 315.
[15]
Collison LW, Delgoffe GM, Guy CS, et al. The composition and signaling of the IL-35 receptor are unconventional[J]. Nat Immunol, 2012, 13(3): 290-299.
[16]
Aparicio-Siegmund S, Moll JM, Lokau J, et al. Recombinant p35 from bacteria can form interleukin (IL-)12, but not IL-35[J]. PLoS One, 2014, 9(9): e107990.
[17]
Jin E, Wang C, Hu Q, et al. The regular distribution and expression pattern of immunosuppressive cytokine IL-35 in mouse uterus during early pregnancy[J]. Rom J Morphol Embryol, 2014, 55(4): 1353-1361.
[18]
Yue CY, Zhang B, Ying CM. Elevated serum level of IL-35 associated with the maintenance of maternal-fetal immune tolerance in normal pregnancy[J]. PLoS One, 2015, 10(6): e0128219.
[19]
潘秀和, 彭笑, 高巧艳, 等. IL-35在感染、炎症与自身免疫性疾病中的作用[J]. 中华微生物学和免疫学杂志, 2015, 35(3): 237-240.
[20]
Cao W, Wang X, Chen T, et al. The Expression of Notch/Notch ligand, IL-35, IL-17, and Th17/Treg in preeclampsia[J]. Dis Markers, 2015, 2015: 316182.
[21]
闫永嘉, 何向辉. IL-35结构功能及其调控Treg细胞免疫抑制功能的研究进展[J]. 天津医药, 2014, 42(12): 1243-1245.
[22]
Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol, 2005, 6(11): 1123-1132.
[23]
Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J]. Nat Immunol, 2005, 6(11): 1133-1141.
[24]
Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3): 1151-1164.
[25]
Schumacher A, Wafula PO, Teles A, et al. Blockage of heme oxygenase-1 abrogates the protective effect of regulatory T cells on murine pregnancy and promotes the maturation of dendritic cells[J]. PLoS One, 2012, 7(8): e42301.
[26]
魏志霞, 杨海澜, 韩方. Foxp3和RORγt基因在子痫前期患者外周血单个核细胞中的表达[J]. 中华妇产科杂志, 2013, 48(3): 204-206.
[27]
Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties[J]. Annu Rev Immunol, 1989, 7: 145-173.
[28]
Vargas-Rojas MI, Solleiro-Villavicencio H, Soto-Vega E. Th1, Th2, Th17 and Treg levels in umbilical cord blood in preeclampsia[J]. J Matern Fetal Neonatal Med, 2016, 29(10): 1642-1645.
[29]
Talaat RM, Mohamed SF, Bassyouni IH, et al. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: correlation with disease activity[J]. Cytokine, 2015, 72(2): 146-153.
[30]
尹雪, 任秀敏, 刘春苗, 等. 变应性鼻炎患者IL-35对于Treg/Th17细胞平衡的调控作用[J]. 临床耳鼻喉头颈外科杂志, 2016, 30(3): 213-216.
[31]
Martin JC, Baeten DL, Josien R. Emerging role of IL-17 and Th17 cells in systemic lupus erythematosus[J]. Clin Immunol, 2014, 154(1): 1-12.
[32]
Papp KA, Langley RG, Sigurgeirsson B, et al. Efficacy and safety of secukinumab in the treatment of moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled phase Ⅱ dose-ranging study[J]. Br J Dermatol, 2013, 168 (2): 412-421.
[33]
Li HC, Zhang YX, Liu Y, et al. Effect of IL-17 monoclonal antibody secukinumab combined with IL-35 blockade of Notch signaling pathway on the invasive capability of hepatoma cells[J]. Genet Mol Res, 2016, 15(2): 238-242.
[34]
Long J, Zhang X, Wen M, et al. IL-35 over-expression increases apoptosis sensitivity and suppresses cell growth in human cancer cells[J]. Biochem Biophys Res Commun, 2013, 430(1): 364-369.
[35]
Nakano S, Morimoto S, Suzuki S, et al. Immunoregulatory role of IL-35 in T cells of patients with rheumatoid arthritis[J]. Rheumatology (Oxford), 2015, 54 (8): 1498-1506.
[1] Hui Cheng, Yanyu Li, Bei Zhang, Jie Cheng, Yanling Zhang. MicroRNA-195 targeting chemokine 5 inhibits proliferation, metastasis and invasion of trophoblast cells and its mechanism[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(02): 165-174.
[2] Xixi Deng, Tingting Xu, Yongchi Zhan, Xiaodong Wang. Expression of high mobility group box 1 at maternal-fetal interface and its effect on macrophages in preeclampsia[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(01): 30-39.
[3] Xilong Liu, Qian Rong, Yue Xing, Biqiong Pan, Dan Lu. Correlation study between serum N-terminal pro-brain natriuretic peptide levels and pregnancy outcomes of pregnant women with severe preeclampsia[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(06): 709-714.
[4] Yan Wang, Fengjun Guo, Wenhui Zha, Chang Liu, Yaping Luan, Fuju Wu. Clinical application values of pulmonary artery blood flow indexes and pulmonary surfactant protein level for perinatal lung maturity when pregnant women complicated with severe preeclampsia and gestational diabetes mellitus[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(06): 692-698.
[5] Bing Li, Tingting Xu, Lili Zhu, Ning Li, Aiqun Xu, Jun Zhang, Shuhong Li. Current situation of relationship between tissue factor pathway inhibitor and pregnancy-related diseases[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(06): 650-656.
[6] Jie Ju, Jiyu Li, Jianjuan Gu, Lizhuo Liu, Fang Lyu. Diagnostic value of serum lactate dehydrogenase detection in preeclampsia: a Meta-analysis[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(05): 612-620.
[7] Lei Li, Hongbo Qi. Research status of mirror syndrome[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(03): 273-277.
[8] Qiuhe Chen, Dan Shan, Qian Chen, Yayi Hu. Correlation analysis between advanced pregnant women with gestational diabetes mellitus and different types of preeclampsia[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2020, 16(05): 574-583.
[9] Yi Liu, Yini Wen, Yinghui Wu. Relationship of cytokines of peripheral blood helper T cells and regulatory T cells with renal damage in children with Henoch-Schönlein purpura[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2023, 12(05): 271-275.
[10] Yongqing Han, Minchao Rao, Feng Fu, Kairong Huang. Shenqishiyiwei granules combined with FOLFOX4 chemotherapy for treatment of patients with advanced colorectal cancer: short-term efficacy and effect on serum IL-35, IL-37, and T lymphocyte subsets[J]. Chinese Journal of Clinicians(Electronic Edition), 2022, 16(05): 400-404.
[11] Danmo Zhu, Xueqiong Liu, Dan Lu. Correlation between inflammatory markers in maternal peripheral blood and pre-eclampsia[J]. Chinese Journal of Clinicians(Electronic Edition), 2021, 15(11): 865-870.
[12] Dajun Fang, Qintian Zheng. Timing of pregnancy termination and mode of delivery for patients with preeclampsia[J]. Chinese Journal of Obstetric Emergency(Electronic Edition), 2021, 10(03): 151-154.
[13] Shilei Bi, Lizi Zhang, Lili Du, Dunjin Chen. The clinical characteristics and maternal and neonatal outcomes of early and late onset preeclampsia[J]. Chinese Journal of Obstetric Emergency(Electronic Edition), 2021, 10(02): 96-100.
[14] Juanjuan Chen, Wen Sun, Chunhong Su, Lin Lin, Yanmei Zhou, Lin Yu, Lili Du, Jingsi Chen, Dunjin Chen. Clinical characteristics and pregnancy outcomes of preeclampsia complicated with fetal growth restriction[J]. Chinese Journal of Obstetric Emergency(Electronic Edition), 2021, 10(02): 89-95.
[15] Huijie Gao, Zhongying Wang, Yulian Hu, Hua Pan, Chao Liu. Expression changes of Lumican and autophagy-related proteins in placenta of patients with preeclampsia[J]. Chinese Journal of Diagnostics(Electronic Edition), 2021, 09(01): 35-39.
Viewed
Full text


Abstract