切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2023, Vol. 19 ›› Issue (06) : 719 -727. doi: 10.3877/cma.j.issn.1673-5250.2023.06.014

论著

MTO1基因变异致联合氧化磷酸化缺陷症10型患儿的临床和遗传学分析
吴卫照1, 肖贞1, 袁转苹1, 吴丹2, 李源斌,1   
  1. 1. 中山市小榄人民医院儿科,中山 528415
    2. 汕头大学医学院第二附属医院儿科,汕头 515041
  • 收稿日期:2023-05-19 修回日期:2023-11-07 出版日期:2023-12-01
  • 通信作者: 李源斌

Clinical characteristics and genetic analysis of combined oxidative phosphorylation deficiency type 10 caused by MTO1 gene mutation

Weizhao Wu1, Zhen Xiao1, Zhuanping Yuan1, Dan Wu2, Yuanbin Li,1   

  1. 1. Department of Pediatrics, Xiaolan People′s Hospital of Zhongshan, Zhongshan 528415, Guangdong Province, China
    2. Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
  • Received:2023-05-19 Revised:2023-11-07 Published:2023-12-01
  • Corresponding author: Yuanbin Li
  • Supported by:
    Guangdong Science and Technology Special Fund(20200601)
引用本文:

吴卫照, 肖贞, 袁转苹, 吴丹, 李源斌. MTO1基因变异致联合氧化磷酸化缺陷症10型患儿的临床和遗传学分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 719-727.

Weizhao Wu, Zhen Xiao, Zhuanping Yuan, Dan Wu, Yuanbin Li. Clinical characteristics and genetic analysis of combined oxidative phosphorylation deficiency type 10 caused by MTO1 gene mutation[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(06): 719-727.

目的

探讨线粒体翻译优化因子(MTO)1基因变异,所致常染色体隐性遗传联合氧化磷酸化缺陷症10型(COXPD10)患儿的临床表型和遗传学特征。

方法

选择2022年7月中山市小榄人民医院儿科收治的1例以运动发育迟缓为主诉的COXPD10患儿(患儿1)为研究对象。回顾性分析其临床资料,采用全外显子组测序(WES)对患儿1及其父母进行遗传学分析。根据美国医学遗传学与基因组学学会(ACMG)制定的《序列变异解释的标准和指南》(以下简称为ACMG指南),对检出变异致病性进行分析。分别以"MTO1基因""联合氧化磷酸化缺陷症10型""复合氧化磷酸化缺陷症10型""COXPD10",以及"MTO1""combined oxidative phosphorylation deficiency-10""COXPD10"为中、英文关键词,在万方数据知识服务平台、中国知网及Web of Science和PubMed数据库中,检索MTO1基因变异所致COXPD10患儿。文献检索年限设定为各数据库建库至2023年3月。对检索文献中COXPD10患儿MTO1基因变异情况与临床表现等进行复习。本研究遵循的程序符合中山市小榄人民医院医学伦理委员会的规定,并通过该伦理委员会审查及批准(审批文号:ZSXL-ll2023-002),患儿1监护人签署临床研究知情同意书。

结果

①患儿1为8个月龄女婴。其本次入院相关检查结果显示,Alberta婴儿运动量表(AIMS)评分为18分(低于同龄儿AIMS评分第5百分位数);头颅MRI检查提示,双侧丘脑、中脑呈对称性片状异常信号,T1加权成像(WI)呈稍低信号,T2WI呈稍高信号,T2-液体衰减反转恢复(FLAIR)呈低信号,扩散加权成像(DWI)呈高信号;心脏彩色多普勒超声检查提示,左心室增大,卵圆孔未闭;血清乳酸浓度为9.39 mmol/L(异常增高);尿液有机酸分析结果无异常;2022年9月复查尿液有机酸结果显示,尿液有机酸异常增高。其WES检测结果提示,携带MTO1基因c.134G>A(p.Gly45Glu)和c.578C>G(p.Thr193Ser)杂合变异,分别遗传自其父、母亲。这2种变异在万方数据知识服务平台、中国知网、Web of Science、PubMed数据库及基因组聚合数据库(gnomAD)中均未见报道。根据ACMG指南,将这2种变异判断为可能致病性变异(PS4+PM2+PM3)。结合临床表现与遗传学检测结果,患儿1被诊断为COXPD10患儿。②文献复习结果:共计纳入MTO1基因变异所致COXPD10患儿相关文献18篇,涉及44例患儿(患儿2~45),加上患儿1,共计45例COXPD10患儿。这45例患儿中,发生MTO1基因变异30种,分布于10个外显子中,其中8号外显子发生变异最多,为11种,并且均为错义变异;主要临床表现:高乳酸血症(42例,93.3%),心血管疾病(38例,84.4%),线粒体复合体缺乏症(34例,75.6%),发育迟缓(30例,66.7%)等。

结论

MTO1基因c.134G>A(p.Gly45Glu)和c.578C>G(p.Thr193Ser)杂合变异是患儿1的致病原因。本研究丰富了MTO1基因变异所致COXPD10患儿的基因变异谱,为临床诊断、产前诊断COXPD10患儿提供了依据。对于运动发育迟缓、头颅MRI检查结果异常、血清乳酸水平异常增高的患儿,需警惕COXPD10可能,应尽早完善基因检查明确病因。

Objective

To explore the clinical phenotype and genetic characteristics of a child with autosomal recessive combined oxidative phosphorylation deficiency type 10 (COXPD10) caused by mitochondrial translation optimization factor (MTO)1 gene variation.

Methods

A child with COXPD10 (patient-1) who was admitted to the Department of Pediatrics, Xiaolan People′s Hospital of Zhongshan in July 2022 and complained of delayed motor development was selected as research subject. The clinical data of patient-1 were retrospectively analyzed, and whole-exome sequencing (WES) was used to perform genetic analysis on patient-1 and her parents. The pathogenicity of the detected variants was analyzed in accordance with the Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of American College of Medical Genetics and Genomics (ACMG) (hereinafter referred to as the ACMG guideline). Related literature of children with COXPD10 caused by MTO1 gene variation was reviewed with " MTO1 gene" " combined oxidative phosphorylation deficiency type 10" " complex oxidative phosphorylation deficiency type 10" and " COXPD10" both in Chinese and English as keywords in Wanfang Data Knowledge Service Platform, CNKI, Web of Science and PubMed, and search time was set from the inception of each database to March 2023. The MTO1 gene variations and manifestations of COXPD10 children in retrieved literature were reviewed. The procedures followed in this study complied with the regulations of the Medical Ethics Committee of Xiaolan People′s Hospital of Zhongshan, and were reviewed and approved by the ethics committee (Approval No. ZSXL-ll2023-002). The guardian of patient-1 signed the clinical research informed consent form.

Results

①Patient-1 was an 8-month-old girl. The relevant auxiliary examination results of patient-1 at admission showed that the Alberta Infant Motor Scale (AIMS) score was 18 points (lower than the 5th percentile of AIMS scores for children of the same age); the brain MRI showed symmetrical patchy abnormal signals in the bilateral thalamus and midbrain, slightly hypointense on T1-weighted imaging (WI), slightly hyperintense on T2WI, hypointense on T2-fluid-attenuated inversion recovery (FLAIR), and hyperintense on diffusion-weighted imaging (DWI); cardiac color Doppler ultrasound showed that the left ventricle was enlarged and the foramen ovale was patent; the serum lactic acid concentration was 9.39 mmol/L (abnormally increased); the urine organic acid analysis results at admission showed no abnormalities, but in September 2022, the urine organic acid re-examination results showed an abnormal increase. WES test results showed that she carried heterozygous mutations c. 134G>A(p.Gly45Glu) and c. 578C>G(p.Thr193Ser) in MTO1 gene, which inherited from her father and mother, respectively. These two mutations have not been reported in Wanfang Data Knowledge Service Platform, CNKI, Web of Science, PubMed database and Genome Aggregation Database (gnomAD). According to the ACMG guideline, these two variants were judged to be possible pathogenic variants (PS4+ PM2+ PM3). Based on the clinical manifestations and genetic test results, patient-1 was diagnosed as COXPD10. ②Literature review results: a total of 18 pieces of relevant literature on children with COXPD10 caused by MTO1 gene mutations were included, involving 44 cases (patient 2-45), and together with patient-1, a total of 45 children with COXPD10 were included. Among these 45 children, 28 mutations occurred in the MTO1 gene, distributed across 10 exons, and exon 8 had the most mutations, with 11 different types, all of which were missense mutations. The main clinical manifestations: hyperlactatemia (42 cases, 93.3%), cardiovascular diseases (38 cases, 84.4%), mitochondrial complex deficiency (34 cases, 75.6%), developmental delay (30 cases, 66.7%), and so on.

Conclusions

The heterozygous variants of c. 134G>A (p.Gly45Glu) and c. 578C>G (p.Thr193Ser) in MTO1 gene are the causative factors of patient-1. This study enriches the gene variation spectrum of COXPD10 children caused by MTO1 gene variation and provides a basis for clinical diagnosis and prenatal diagnosis of COXPD10 children. For children with delayed motor development, abnormal brain MRI examination results, and abnormally increased serum lactic acid levels, caution should be exercised for the possibility of COXPD10. Early and comprehensive genetic testing is recommended to confirm the cause.

图1 COXPD10患儿(患儿1,女性,8个月龄)头颅MRI检查图像(图1A:中脑T1-FLAIR序列图像;图1B:中脑T2-FLAIR图像;图1C:丘脑T1-FLAIR图像;图1D:丘脑DWI图像;图1E:丘脑冠状位图像;图1F:中脑DWI图像)(箭头所示为成像异常信号改变) 注:COXPD10为联合氧化磷酸化缺陷症10型,FLAIR为液体衰减反转恢复,DWI为扩散加权成像
表1 COXPD10患儿(患儿1)不同时间点尿液有机酸检测结果
图2 COXPD10患儿(患儿1,女性,8个月龄)及其父母MTO1基因变异位点Sanger测序图[图2A:患儿1及其父亲MTO1基因发生c.134G>A(p.Gly45Glu)杂合变异(箭头所示),患儿1母亲该位点无变异(箭头所示);图2B:患儿1及其母亲MTO1基因发生c.578C>G(p.Thr193Ser)杂合变异(箭头所示),患儿1父亲该位点无变异(箭头所示)] 注:COXPD10为联合氧化磷酸化缺陷症10型
图3 COXPD10患儿(患儿1,女性,8个月龄)家系图 注:Ⅰ表示第1代,Ⅱ表示第2代。表示男性携带者,表示女性携带者,表示女性杂合子,↗表示先证者。COXPD10为联合氧化磷酸化缺陷症10型
图4 COXPD10患儿(患儿1)及文献复习纳入的患儿2~45的30种MTO1基因变异所在外显子位置分布示意图 注:c.134G>A与c.578C>G为患儿1的MTO1基因变异,其余为文献复习纳入患儿2~45的MTO1基因变异。COXPD10为联合氧化磷酸化缺陷症10型
[1]
Kose M, Isik E, Aykut A, et al. The utility of next-generation sequencing technologies in diagnosis of Mendelian mitochondrial diseases and reflections on clinical spectrum[J]. J Pediatr Endocrinol Metab, 2021, 34(4): 417-430. DOI: 10.1515/jpem-2020-0410.
[2]
Niyazov DM, Kahler SG, Frye RE. Primary mitochondrial disease and secondary mitochondrial dysfunction: importance of distinction for diagnosis and treatment[J]. Mol Syndromol, 2016, 7(3): 122-137. DOI: 10.1159/000446586.
[3]
Baruffini E, Dallabona C, Invernizzi F, et al. MTO1 mutations are associated with hypertrophic cardiomyopathy and lactic acidosis and cause respiratory chain deficiency in humans and yeast [J]. Hum Mutat, 2013, 34 (11): 1501-1509. DOI: 10.1002/humu.22393.
[4]
Martín García-Silva MT, Barcia G, et al. The homozygous R504C mutation in MTO1 gene is responsible for ONCE syndrome[J]. Clin Genet, 2017, 91(1): 46-53. DOI: 10.1111/cge.12815.
[5]
Powell CA, Nicholls TJ, Minczuk M. Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease[J]. Front Genet, 2015, 6: 79. DOI: 10.3389/fgene.2015.00079.
[6]
Tischner C, Hofer A, Wulff V, et al. MTO1 mediates tissue specificity of OXPHOS defects via tRNA modification and translation optimization, which can be bypassed by dietary intervention [J]. Hum Mol Genet, 2015, 24(8) : 2247-2266. DOI: 10.1093/hmg/ddu743.
[7]
O′Byrne JJ, Tarailo-Graovac M, Ghani A, et al. The genotypic and phenotypic spectrum of MTO1 deficiency[J]. Mol Genet Metab, 2018, 123(1): 28-42. DOI: 10.1016/j.ymgme.2017.11.003.
[8]
Li E, Emmanuele V, Testa F, et al. Novel mitochondrial translation optimizer-1 mutations as a cause of hereditary optic neuropathy[J]. J Neuroophthalmol, 2020, 40(3): 406-410. DOI: 10.1097/WNO.0000000000000858.
[9]
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. DOI: 10.1038/gim.2015.30.
[10]
付欣睿,荣箫. 以气促起病的新生儿联合氧化磷酸化障碍10型1例[J]. 中华围产医学杂志2022, 25(9): 700-702. DOI: 10.3760/cma.j.cn113903-20220427-00418.
[11]
Meseguer S, Navarro-González C, Panadero J, et al. The MELAS mutation m.3243A>G alters the expression of mitochondrial tRNA fragments[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(9): 1433-1449. DOI: 10.1016/j.bbamcr.2019.06.004.
[12]
Li X, Guan MX. A human mitochondrial GTP binding protein related to tRNA modification may modulate phenotypic expression of the deafness-associated mitochondrial 12S rRNA mutation[J]. Mol Cell Biol, 2002, 22(21): 7701-7711. DOI: 10.1128/MCB.22.21.7701-7711.2002.
[13]
Gorman GS, Chinnery PF, DiMauro S, et al. Mitochondrial diseases[J]. Nat Rev Dis Primers, 2016, 2: 16080. DOI: 10.1038/nrdp.2016.80.
[15]
Ghezzi D, Baruffini E, Haack TB, et al. Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis[J]. Am J Hum Genet, 2012, 90(6): 1079-1087. DOI: 10.1016/j.ajhg.2012.04.011.
[16]
Charif M, Titah SM, Roubertie A, et al. Optic neuropathy, cardiomyopathy, cognitive disability in patients with a homozygous mutation in the nuclear MTO1 and a mitochondrial MT-TF variant[J]. Am J Med Genet A, 2015, 167A(10): 2366-2374. DOI: 10.1002/ajmg.a.37188.
[17]
迂艳红,禄子薇,李佳芩,等. MTO1基因新位点突变致复合型氧化磷酸化缺陷症10型1例[J]. 中华实用儿科临床杂志2022, 37(13): 1026-1028. DOI: 10.3760/cma.j.cn101070-20210511-00518.
[18]
Kremer LS, L′hermitte-Stead C, Lesimple P, et al. Severe respiratory complex Ⅲdefect prevents liver adaptation to prolonged fasting[J]. J Hepatol, 2016, 65(2): 377-385. DOI: 10.1016/j.jhep.2016.04.017.
[19]
Nogueira C, Silva L, Pereira C, et al. Targeted next generation sequencing identifies novel pathogenic variants and provides molecular diagnoses in a cohort of pediatric and adult patients with unexplained mitochondrial dysfunction[J]. Mitochondrion, 2019, 47: 309-317. DOI: 10.1016/j.mito.2019.02.006.
[20]
Zhou C, Wang J, Zhang Q, et al. Clinical and genetic analysis of combined oxidative phosphorylation deficiency-10 caused by MTO1 mutation[J]. Clin Chim Acta, 2022, 526: 74-80. DOI: 10.1016/j.cca.2021.12.025.
[21]
Taylor RW, Pyle A, Griffin H, et al. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies[J]. JAMA, 2014, 312(1): 68-77. DOI: 10.1001/jama.2014.7184.
[22]
Vasta V, Merritt JL, Saneto RP, et al. Next-generation sequencing for mitochondrial diseases: a wide diagnostic spectrum[J]. Pediatr Int, 2012, 54(5): 585-601. DOI: 10.1111/j.1442-200X.2012.03644.x.
[23]
Kamps R, Szklarczyk R, Theunissen TE, et al. Genetic defects in mtDNA-encoded protein translation cause pediatric, mitochondrial cardiomyopathy with early-onset brain disease[J]. Eur J Hum Genet, 2018, 26(4): 537-551. DOI: 10.1038/s41431-017-0058-2.
[24]
艾力克木·阿不都玩克,郭红,王晓英,等. DGUOK基因突变脑肝型线粒体DNA耗竭综合征患儿的临床诊治及产前诊断[J/OL]. 中华妇幼临床医学杂志(电子版), 2020, 16(4): 459-464. DOI: 10.3877/cma.j.issn.1673-5250.2020.04.013.
[25]
Gibson K, Halliday JL, Kirby DM, et al. Mitochondrial oxidative phosphorylation disorders presenting in neonates: clinical manifestations and enzymatic and molecular diagnoses[J]. Pediatrics, 2008, 122(5): 1003-1008. DOI: 10.1542/peds.2007-3502.
[26]
Bartsakoulia M, Müller JS, Gomez-Duran A, et al. Cysteine supplementation may be beneficial in a subgroup of mitochondrial translation deficiencies[J]. J Neuromuscul Dis, 2016, 3(3): 363-379. DOI: 10.3233/JND-160178.
[1] 陶宏宇, 叶菁菁, 俞劲, 杨秀珍, 钱晶晶, 徐彬, 徐玮泽, 舒强. 右心声学造影在儿童右向左分流相关疾病中的评估价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 959-965.
[2] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[3] 向韵, 卢游, 杨凡. 全氟及多氟烷基化合物暴露与儿童肥胖症相关性研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 569-574.
[4] 刘冉佳, 崔向丽, 周效竹, 曲伟, 朱志军. 儿童肝移植受者健康相关生存质量评价的荟萃分析[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 302-309.
[5] 黄莹, 李璇, 刘梦杨, 彭桂林, 徐鑫, 韦兵, 杨超. 靶向联合治疗双肺移植术后KRAS和BRAF基因双突变晚期肺腺癌一例[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 298-301.
[6] 丁荷蓓, 王珣, 陈为国. 七氟烷吸入麻醉与异丙酚静脉麻醉在儿童腹股沟斜疝手术中的应用比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 570-574.
[7] 赖淼, 景鑫, 李桂珍, 李怡. 非小细胞肺癌EGFR 突变亚型的临床病理和预后意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 731-737.
[8] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[9] 中华医学会器官移植学分会, 中华医学会外科学分会外科手术学学组, 中华医学会外科学分会移植学组, 华南劈离式肝移植联盟. 劈离式供肝儿童肝移植中国临床操作指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 593-601.
[10] 刘军, 丘文静, 孙方昊, 李松盈, 易述红, 傅斌生, 杨扬, 罗慧. 在体与离体劈离式肝移植在儿童肝移植中的应用比较[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 688-693.
[11] 张琛, 秦鸣, 董娟, 陈玉龙. 超声检查对儿童肠扭转缺血性改变的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 565-568.
[12] 惠泉, 孙方昱, 赵欣, 许青, 李奕, 陈建雄, 吴立, 郑伟燕. 急性间歇性卟啉病HMBS基因新发缺失突变一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 507-511.
[13] 李玺, 蔡芸莹, 张永红, 苏恒. 假性软骨发育不全合并1型糖尿病一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 518-520.
[14] 陈晓胜, 何佳, 刘方, 吴蕊, 杨海涛, 樊晓寒. 直立倾斜试验诱发31 秒心脏停搏的植入心脏起搏器儿童一例并文献复习[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 488-494.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文
4
HTML PDF
最新录用 在线预览 正式出版 最新录用 在线预览 正式出版
0 0 3 0 0 1

  来源 本网站 其他网站
  次数 3 1
  比例 75% 25%

摘要
113
最新录用 在线预览 正式出版
0 0 113
  来源 本网站 其他网站
  次数 52 61
  比例 46% 54%