[1] |
Kose M, Isik E, Aykut A, et al. The utility of next-generation sequencing technologies in diagnosis of Mendelian mitochondrial diseases and reflections on clinical spectrum[J]. J Pediatr Endocrinol Metab, 2021, 34(4): 417-430. DOI: 10.1515/jpem-2020-0410.
|
[2] |
Niyazov DM, Kahler SG, Frye RE. Primary mitochondrial disease and secondary mitochondrial dysfunction: importance of distinction for diagnosis and treatment[J]. Mol Syndromol, 2016, 7(3): 122-137. DOI: 10.1159/000446586.
|
[3] |
Baruffini E, Dallabona C, Invernizzi F, et al. MTO1 mutations are associated with hypertrophic cardiomyopathy and lactic acidosis and cause respiratory chain deficiency in humans and yeast [J]. Hum Mutat, 2013, 34 (11): 1501-1509. DOI: 10.1002/humu.22393.
|
[4] |
Martín Má, García-Silva MT, Barcia G, et al. The homozygous R504C mutation in MTO1 gene is responsible for ONCE syndrome[J]. Clin Genet, 2017, 91(1): 46-53. DOI: 10.1111/cge.12815.
|
[5] |
Powell CA, Nicholls TJ, Minczuk M. Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease[J]. Front Genet, 2015, 6: 79. DOI: 10.3389/fgene.2015.00079.
|
[6] |
Tischner C, Hofer A, Wulff V, et al. MTO1 mediates tissue specificity of OXPHOS defects via tRNA modification and translation optimization, which can be bypassed by dietary intervention [J]. Hum Mol Genet, 2015, 24(8) : 2247-2266. DOI: 10.1093/hmg/ddu743.
|
[7] |
O′Byrne JJ, Tarailo-Graovac M, Ghani A, et al. The genotypic and phenotypic spectrum of MTO1 deficiency[J]. Mol Genet Metab, 2018, 123(1): 28-42. DOI: 10.1016/j.ymgme.2017.11.003.
|
[8] |
Li E, Emmanuele V, Testa F, et al. Novel mitochondrial translation optimizer-1 mutations as a cause of hereditary optic neuropathy[J]. J Neuroophthalmol, 2020, 40(3): 406-410. DOI: 10.1097/WNO.0000000000000858.
|
[9] |
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. DOI: 10.1038/gim.2015.30.
|
[10] |
|
[11] |
Meseguer S, Navarro-González C, Panadero J, et al. The MELAS mutation m.3243A>G alters the expression of mitochondrial tRNA fragments[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(9): 1433-1449. DOI: 10.1016/j.bbamcr.2019.06.004.
|
[12] |
Li X, Guan MX. A human mitochondrial GTP binding protein related to tRNA modification may modulate phenotypic expression of the deafness-associated mitochondrial 12S rRNA mutation[J]. Mol Cell Biol, 2002, 22(21): 7701-7711. DOI: 10.1128/MCB.22.21.7701-7711.2002.
|
[13] |
Gorman GS, Chinnery PF, DiMauro S, et al. Mitochondrial diseases[J]. Nat Rev Dis Primers, 2016, 2: 16080. DOI: 10.1038/nrdp.2016.80.
|
[15] |
Ghezzi D, Baruffini E, Haack TB, et al. Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis[J]. Am J Hum Genet, 2012, 90(6): 1079-1087. DOI: 10.1016/j.ajhg.2012.04.011.
|
[16] |
Charif M, Titah SM, Roubertie A, et al. Optic neuropathy, cardiomyopathy, cognitive disability in patients with a homozygous mutation in the nuclear MTO1 and a mitochondrial MT-TF variant[J]. Am J Med Genet A, 2015, 167A(10): 2366-2374. DOI: 10.1002/ajmg.a.37188.
|
[17] |
|
[18] |
Kremer LS, L′hermitte-Stead C, Lesimple P, et al. Severe respiratory complex Ⅲdefect prevents liver adaptation to prolonged fasting[J]. J Hepatol, 2016, 65(2): 377-385. DOI: 10.1016/j.jhep.2016.04.017.
|
[19] |
Nogueira C, Silva L, Pereira C, et al. Targeted next generation sequencing identifies novel pathogenic variants and provides molecular diagnoses in a cohort of pediatric and adult patients with unexplained mitochondrial dysfunction[J]. Mitochondrion, 2019, 47: 309-317. DOI: 10.1016/j.mito.2019.02.006.
|
[20] |
Zhou C, Wang J, Zhang Q, et al. Clinical and genetic analysis of combined oxidative phosphorylation deficiency-10 caused by MTO1 mutation[J]. Clin Chim Acta, 2022, 526: 74-80. DOI: 10.1016/j.cca.2021.12.025.
|
[21] |
Taylor RW, Pyle A, Griffin H, et al. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies[J]. JAMA, 2014, 312(1): 68-77. DOI: 10.1001/jama.2014.7184.
|
[22] |
Vasta V, Merritt JL, Saneto RP, et al. Next-generation sequencing for mitochondrial diseases: a wide diagnostic spectrum[J]. Pediatr Int, 2012, 54(5): 585-601. DOI: 10.1111/j.1442-200X.2012.03644.x.
|
[23] |
Kamps R, Szklarczyk R, Theunissen TE, et al. Genetic defects in mtDNA-encoded protein translation cause pediatric, mitochondrial cardiomyopathy with early-onset brain disease[J]. Eur J Hum Genet, 2018, 26(4): 537-551. DOI: 10.1038/s41431-017-0058-2.
|
[24] |
|
[25] |
Gibson K, Halliday JL, Kirby DM, et al. Mitochondrial oxidative phosphorylation disorders presenting in neonates: clinical manifestations and enzymatic and molecular diagnoses[J]. Pediatrics, 2008, 122(5): 1003-1008. DOI: 10.1542/peds.2007-3502.
|
[26] |
Bartsakoulia M, Müller JS, Gomez-Duran A, et al. Cysteine supplementation may be beneficial in a subgroup of mitochondrial translation deficiencies[J]. J Neuromuscul Dis, 2016, 3(3): 363-379. DOI: 10.3233/JND-160178.
|