切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2022, Vol. 18 ›› Issue (05) : 497 -505. doi: 10.3877/cma.j.issn.1673-5250.2022.05.001

专题论坛

支气管肺发育不良及肺动脉高压有关信号通路研究现状
伏洪玲, 刘瀚旻()   
  1. 四川大学华西第二医院儿科、出生缺陷与相关妇儿疾病教育部重点实验室、西部妇幼医学研究院血管重构与发育缺陷研究室,成都 610041
  • 收稿日期:2021-11-30 修回日期:2022-07-30 出版日期:2022-10-01
  • 通信作者: 刘瀚旻

Research progress on signaling pathways involved in bronchopulmonary dysplasia and pulmonary hypertension

Hongling Fu, Hanmin Liu()   

  1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Vascular Remodeling and Developmental Defects Research Unit of West China Institutes for Women and Children′s Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2021-11-30 Revised:2022-07-30 Published:2022-10-01
  • Corresponding author: Hanmin Liu
  • Supported by:
    National Key Research and Development Program of China(2017YFC0211705)
引用本文:

伏洪玲, 刘瀚旻. 支气管肺发育不良及肺动脉高压有关信号通路研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 497-505.

Hongling Fu, Hanmin Liu. Research progress on signaling pathways involved in bronchopulmonary dysplasia and pulmonary hypertension[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(05): 497-505.

支气管肺发育不良(BPD)是早产儿的主要并发症之一。中至重度BPD患儿中,约25%可能并发BPD相关肺动脉高压(PH),是影响BPD患儿病死率增高及后期生存质量降低的主要原因。目前针对上述BPD及其相关PH的预防与治疗方法尚有限,因此深入研究其发病机制,进而进行针对性有效治疗刻不容缓。近年研究发现,在BPD及其相关PH发生、发展过程中,许多相关信号通路存在异常,如血管生成素(Ang)、血管内皮生长因子(VEGF)、转化生长因子(TGF)-β、Wnt、结缔组织生长因子(CTGF)、成纤维细胞生长因子(FGF)10、微小RNA(miRNA)、小窝蛋白(Cav)-1信号通路等,这些加深了临床对BPD及其相关PH发病机制的理解,并为其治疗提供了新思路。笔者拟就BPD及其相关PH所涉及相关信号通路研究现状进行阐述。

Bronchopulmonary dysplasia (BPD) is the most common complication of premature infants. About 25% children with moderate to severe BPD may be complicated with BPD-associated pulmonary hypertension (PH), which is the main reason that affects survival rate and life quality of children with BPD in the future. At present, prevention and treatments for BPD and BPD-associated PH are so limited that it is urgent to investigate its pathogenesis and subsequently targeted treatment. In recent years, many studies have found abnormalities in many signaling pathways during the development of BPD and BPD-associated PH, such as angiopoietin (Ang), vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β, Wnt, connective tissue growth factor (CTGF), fibroblast growth factor (FGF)10, microRNA (miRNA), and caveolin (Cav)-1-related signaling pathways. All these findings could deepen the understanding of pathogenesis of BPD and BPD-associated PH and provide new ideas of the treatment. This paper reviews the current researches of signaling pathways involved in BPD and BPD-associated PH.

[1]
Goss KN, Everett AD, Mourani PM, et al. Addressing the challenges of phenotyping pediatric pulmonary vascular disease[J]. Pulm Circ, 2017, 7(1): 7-19. DOI: 10.1086/689750.
[2]
Stoll BJ, Hansen NI, Bell EF, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network[J]. Pediatrics, 2010, 126(3): 443-456. DOI: 10.1542/peds.2009-2959.
[3]
Weismann CG, Asnes JD, Bazzy-Asaad A, et al. Pulmonary hypertension in preterm infants: results of a prospective screening program[J]. J Perinat, 2017, 37(1): 572-577. DOI: 10.1038/jp.2016.255.
[4]
Altit G, Bhombal S, Feinstein J, et al. Diminished right ventricular function at diagnosis of pulmonary hypertension is associated with mortality in bronchopulmonary dysplasia[J]. Pulm Circ, 2019, 9(3): 2045894019878598. DOI: 10.1177/2045894019878598.
[5]
Meinel K, Koestenberger M, Sallmon H,et al. Echocardiography for the assessment of pulmonary hypertension and congenital heart disease in the young[J]. Diagnostics (Basel), 2020, 11(1): 49. DOI: 10.3390/diagnostics11010049.
[6]
Schweintzger S, Koestenberger M, Schlagenhauf A, et al. Safety and efficacy of the endothelin receptor antagonist macitentan in pediatric pulmonary hypertension[J]. Cardiovasc Diagn Ther, 2020, 10(5): 1675-1685. DOI: 10.21037/cdt.2020.04.01.
[7]
Kapiainen E, Kihlström MK, Pietilä R, et al. The amino-terminal oligomerization domain of angiopoietin-2 affects vascular remodeling, mammary gland tumor growth, and lung metastasis in mice[J]. Cancer Res, 2021, 81(1): 129-143. DOI: 10.1158/0008-5472.CAN-19-1904.
[8]
王玲,吕回,李美雪. 血管生成素-1在高氧诱导新生鼠支气管肺发育不良的表达及与肺发育的关系[J]. 临床儿科杂志2014, 32(4): 355-359. DOI: 10.3969/j.issn.1000-3606.2014.04.017.
[9]
Kim DH, Kim HS. Serial changes of serum endostatin and angiopoietin-1 levels in preterm infants with severe bronchopulmonary dysplasia and subsequent pulmonary artery hypertension[J]. Neonatology, 2014, 106(1): 55-61. DOI: 10.1159/000358374.
[10]
Thomas W, Seidenspinner S, Kramer BW, et al. Airway angiopoietin-2 in ventilated very preterm infants: association with prenatal factors and neonatal outcome[J]. Pediatr Pulmonol, 2011, 46(8): 777-784. DOI: 10.1002/ppul.21435.
[11]
Miao H, Qiu F, Zhu L, et al. Novel angiogenesis strategy to ameliorate pulmonary hypertension[J]. J Thorac Cardiovasc Surg, 2020161(6): e417-e434. DOI: 10.1016/j.jtcvs.2020.03.044.
[12]
Tomita K, Saito Y, Suzuki T, et al. Vascular endothelial growth factor contributes to lung vascular hyperpermeability in sepsis-associated acute lung injury[J]. Naunyn Schmiedebergs Arch Pharmacol, 2020, 393(12): 2365-2374. DOI: 10.1007/s00210-020-01947-6.
[13]
Korzeniewski SJ, Romero R, Chaiworapongsa T, et al. Maternal plasma angiogenic index-1 (placental growth factor/soluble VEGF receptor-1) is a biomarker for the burden of placental lesions consistent with uteroplacental underperfusion: a longitudinal case-cohort study[J]. Am J Obstet Gynecol, 2016, 214(5): 629.e1-629.e17. DOI: 10.1016/j.ajog.2015.11.015.
[14]
Stevens M, Oltean S. Modulation of receptor tyrosine kinase activity through alternative splicing of ligands and receptors in the VEGF-A/VEGFR axis[J]. Cells, 2019, 8(4): 288. DOI: 10.3390/cells8040288.
[15]
Cai X, Wei B, Li L, et al. Therapeutic potential of apatinib against colorectal cancer by inhibiting VEGFR2-mediated angiogenesis and β-catenin signaling[J]. Onco Targets Ther, 2020, 13: 11031-11044. DOI: 10.2147/OTT.S266549.
[16]
Saeed A, Park R, Sun W. The integration of immune checkpoint inhibitors with VEGF targeted agents in advanced gastric and gastroesophageal adenocarcinoma: a review on the rationale and results of early phase trials[J]. J Hematol Oncol, 2021, 14(1): 13. DOI: 10.1186/s13045-021-01034-0.
[17]
Winter MP, Sharma S, Altmann J, et al. Interruption of vascular endothelial growth factor receptor 2 signaling induces a proliferative pulmonary vasculopathy and pulmonary hypertension[J]. Basic Res Cardiol, 2020, 115(6): 58. DOI: 10.1007/s00395-020-0811-5.
[18]
Le Cras TD, Markham NE, Tuder RM, et al. Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure[J]. Am J Physiol Lung Cell Mol Physiol, 2002, 283(3): L555-L562. DOI: 10.1152/ajplung.00408.2001.
[19]
Mourani PM, Mandell EW, Meier M, et al. Early pulmonary vascular disease in preterm infants is associated with late respiratory outcomes in childhood[J]. :1020-1027. DOI: 10.1164/rccm.201803-0428OC.
[20]
Mourani PM, Sontag MK, Younoszai A, et al. Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia[J]. Am J Respir Crit Care Med, 2015, 191(1): 87-95. DOI: 10.1164/rccm.201409-1594OC.
[21]
Mestan KK, Gotteiner N, Prota N, et al. Cord blood biomarkers of placental maternal vascular underperfusion predict bronchopulmonary dysplasia-associated pulmonary hypertension[J]. J Pediatr, 2017, 185: 33-41. DOI: 10.1016/j.jpeds.2017.01.015.
[22]
Wallace B, Peisl A, Seedorf G, et al. Anti-sFlt-1 therapy preserves lung alveolar and vascular growth in antenatal models of bronchopulmonary dysplasia[J]. Am J Respir Crit Care Med, 2018, 197(6): 776-787. DOI: 10.1164/rccm.201707-1371OC.
[23]
Noe N, Shim A, Millette K, et al. Mesenchyme-specific deletion of TGF-β1 in the embryonic lung disrupts branching morphogenesis and induces lung hypoplasia[J]. Lab Invest, 2019, 99(9): 1363-1375. DOI: 10.1038/s41374-019-0256-3.
[24]
Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83. DOI: 10.1016/j.cbi.2018.07.008.
[25]
Correll KA, Edeen KE, Zemans RL, et al. TGF beta inhibits expression of SP-A, SP-B, SP-C, but not SP-D in human alveolar type Ⅱ cells[J]. Biochem Biophys Res Commun, 2018, 499(4): 843-848. DOI: 10.1016/j.bbrc.2018.04.003.
[26]
Liu Y, Cao Y, Sun S, et al. Transforming growth factor-beta1 upregulation triggers pulmonary artery smooth muscle cell proliferation and apoptosis imbalance in rats with hypoxic pulmonary hypertension via the PTEN/AKT pathways[J]. Int J Biochemistr Cell Biol, 2016, 77(PtA): 141-154. DOI: 10.1016/j.biocel.2016.06.006.
[27]
Tian W, Jiang X, Sung YK, et al. Phenotypically silent bone morphogenetic protein receptor 2 mutations predispose rats to inflammation-induced pulmonary arterial hypertension by enhancing the risk for neointimal transformation[J]. Circulation, 2019, 140(17): 1409-1425. DOI: 10.1161/CIRCULATIONAHA.119.040629.
[28]
Tielemans B, Delcroix M, Belge C, et al. TGFβ and BMPRII signaling pathways in the pathogenesis of pulmonary arterial hypertension[J]. Drug Discov Today, 2019, 24(3): 703-716. DOI: 10.1016/j.drudis.2018.12.001.
[29]
Hiepen C, Jatzlau J, Hildebrandt S, et al. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics[J]. PLoS Biol, 2019, 17(12): e3000557. DOI: 10.1371/journal.pbio.3000557.
[30]
Zhang M, Shi J, Huang Y, et al. Expression of canonical WNT/β-CATENIN signaling components in the developing human lung[J]. BMC Dev Biol, 2012, 12: 21. DOI: 10.1186/1471-213X-12-21.
[31]
Frank DB, Peng T, Zepp JA, et al. Emergence of a wave of Wnt signaling that regulates lung alveologenesis by controlling epithelial self-renewal and differentiation[J]. Cell Rep, 2016, 17(9): 2312-2325. DOI: 10.1016/j.celrep.2016.11.001.
[32]
Jia X, Wu B, Huang J, et al. YAP and Wnt3a independently promote AECIIs proliferation and differentiation by increasing nuclear βcatenin expression in experimental bronchopulmonary dysplasia[J]. Int J Mol Med, 2020, 47(1): 195-206. DOI: 10.3892/ijmm.2020.4791.
[33]
Yuan K, Shamskhou EA, Orcholski ME, et al. Loss of endothelium-derived Wnt5a is associated with reduced pericyte recruitment and small vessel loss in pulmonary arterial hypertension[J]. Circulation, 2019, 139(14): 1710-1724. DOI: 10.1161/CIRCULATIONAHA.118.037642.
[34]
Chen Z, Zhang N, Chu HY, et al. Connective tissue growth factor: from molecular understandings to drug discovery[J]. Front Cell Dev Biol, 2020, 8: 593269. DOI: 10.3389/fcell.2020.593269.
[35]
Chen S, Rong M, Platteau A, et al. CTGF disrupts alveolarization and induces pulmonary hypertension in neonatal mice: implication in the pathogenesis of severe bronchopulmonary dysplasia[J]. Am J Physiol Lung Cell Mol Physiol, 2011, 300(3): L330-L340. DOI: 10.1152/ajplung.00270.2010.
[36]
Wu S, Platteau A, Chen S, et al. Conditional overexpression of connective tissue growth factor disrupts postnatal lung development[J]. Am J Respir Cell Mol Biol, 2010, 42(5): 552-563. DOI: 10.1165/rcmb.2009-0068OC.
[37]
Wang X, Cui H, Wu S. CTGF: a potential therapeutic target for bronchopulmonary dysplasia[J]. Eur J Pharmacol, 2019, 860: 172588. DOI: 10.1016/j.ejphar.2019.172588.
[38]
Rong M, Chen S, Zambrano R, et al. Inhibition of β-catenin signaling protects against CTGF-induced alveolar and vascular pathology in neonatal mouse lung[J]. Pediatr Res, 2016, 80(1): 136-144. DOI: 10.1038/pr.2016.52.
[39]
Chen X, Zhao C, Zhang C, et al. Vagal-α7nAChR signaling promotes lung stem cells regeneration via fibroblast growth factor 10 during lung injury repair[J]. Stem Cell Res Ther, 2020, 11(1): 230. DOI: 10.1186/s13287-020-01757-w.
[40]
Gupte VV, Ramasamy SK, Reddy R, et al. Overexpression of fibroblast growth factor-10 during both inflammatory and fibrotic phases attenuates bleomycin-induced pulmonary fibrosis in mice[J]. Am J Respir Crit Care Med, 2009, 180(5): 424-436. DOI: 10.1164/rccm.200811-1794OC.
[41]
Acosta JM, Thebaud B, Castillo C, et al. Novel mechanisms in murine nitrofen-induced pulmonary hypoplasia: FGF-10 rescue in culture[J]. Am J Physiol Lung Cell Mol Physiol, 2001, 281(1): 250-257. DOI: 10.1152/ajplung.2001.281.1.L250.
[42]
Chao CM, Yahya F, Moiseenko A, et al. Fgf10 deficiency is causative for lethality in a mouse model of bronchopulmonary dysplasia[J]. J Pathol, 2017, 241(1): 91-103. DOI: 10.1002/path.4834.
[43]
Mohamed WA, Aseeri MA. Cord blood fibroblast growth factor-10 as a possible predictor of bronchopulmonary dysplasia in preterm infants[J]. J Neonatal Perinatal Med, 2014, 7(2): 101-105. DOI: 10.3233/NPM-1476613.
[44]
Xing Y, Fu J, Yang H, et al. MicroRNA expression profiles and target prediction in neonatal Wistar rat lungs during the development of bronchopulmonary dysplasia[J]. Int J Mol Med, 2015, 36(5): 1253-1263. DOI: 10.3892/ijmm.2015.2347.
[45]
孙祎璠,马俐,龚小慧,等. 基于生物信息学分析microRNA-495-5p在早产儿支气管肺发育不良中的表达及其临床意义[J]. 中国当代儿科杂志2020, 22(1): 24-30. DOI: 10.7499/j.issn.1008-8830.2020.01.006.
[46]
Gong X, Qiu J, Qiu G,et al. Adrenomedullin regulated by miRNA-574-3p protects premature infants with bronchopulmonary dysplasia[J]. Biosci Rep, 2020, 40(5): BSR20191879. DOI: 10.1042/BSR20191879.
[47]
Brock M, Samillan VJ, Trenkmann M,et al. AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension[J]. Eur Heart J, 2014, 35(45): 3203-3211. DOI: 10.1093/eurheartj/ehs060.
[48]
Syed M, Das P, Pawar A, et al. Hyperoxia causes miR-34a-mediated injury via angiopoietin-1 in neonatal lungs[J]. Nat Commun, 2017, 8(1): 1173. DOI: 10.1038/s41467-017-01349-y.
[49]
Dong Y, Zhang X. Integrative analysis of lncRNAs, miRNAs, and mRNAs-associated ceRNA network in a neonatal mouse model of bronchopulmonary dysplasia[J]. J Matern Fetal Neonatal Med, 2020, 34(19): 3234-3245. DOI: 10.1080/14767058.2020.1815700.
[50]
Yuan, HS, Xiong, DQ, Huang, F, et al. MicroRNA-421 inhibition alleviates bronchopulmonary dysplasia in a mouse model via targeting Fgf10[J]. J Cell Biochem, 2019, 120(10): 16876-16887. DOI; 10.1002/jcb.28945.
[51]
Mathew R. Signaling pathways involved in the development of bronchopulmonary dysplasia and pulmonary hypertension[J]. Children (Basel), 2020, 7(8): 100. DOI: 10.3390/children7080100.
[52]
徐姝燕,富建华. 小窝蛋白-1与疾病[J]. 国际儿科学杂志2017, 44(7): 443-446. DOI: 10.3760/cma.j.issn.1673-4408.2017.07.001.
[53]
Gosens R, Mutawe M, Martin S, et al. Caveolae and caveolins in the respiratory system[J]. Curr Mol Med, 2008, 8(8): 741-753. DOI: 10.2174/156652408786733720.
[54]
Kunzmann S, Collins JJ, Yang Y, et al. Antenatal inflammation reduces expression of caveolin-1 and influences multiple signaling pathways in preterm fetal lungs[J]. Am J Respir Cell Mol Biol, 2011, 45(5): 969-976. DOI: 10.1165/rcmb.2010-0519OC.
[55]
Huang J, Wolk JH, Gewitz MH, et al. Progressive endothelial cell damage in an inflammatory model of pulmonary hypertension[J]. Exp Lung Res, 2010, 36(1): 57-66. DOI: 10.3109/01902140903104793.
[56]
Mathew R, Huang J, Katta US, et al. Immunosuppressant-induced endothelial damage and pulmonary arterial hypertension[J]. J Pediatr Hematol Oncol, 2011, 33(1): 55-58. DOI: 10.1097/MPH.0b013e3181ec0ede.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(06): 751-764.
[3] 许正文, 李振, 侯振扬, 苏长征, 朱彪. 富血小板血浆联合植骨治疗早期非创伤性股骨头坏死[J]. 中华关节外科杂志(电子版), 2023, 17(06): 773-779.
[4] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[5] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[6] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[7] 陈垚, 徐伯群, 高志慧. 改良式中间上入路根治术治疗甲状腺癌的有效性安全性研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 619-622.
[8] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[9] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[10] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[11] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[12] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[13] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[14] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[15] 戴俊, 李硕, 曹影, 汪守峰, 宋红毛, 蔡菁菁, 邵敏, 陈莉, 程雷, 怀德. 鼻内镜下改良高选择性翼管神经低温等离子消融术对中重度变应性鼻炎的效果研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 689-693.
阅读次数
全文


摘要