切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2021, Vol. 17 ›› Issue (06) : 643 -649. doi: 10.3877/cma.j.issn.1673-5250.2021.06.004

专题论坛

生物标志物在新生儿脓毒症中的应用研究进展
曹杨, 刘瀚旻()   
  • 收稿日期:2021-07-29 修回日期:2021-11-07 出版日期:2021-12-01
  • 通信作者: 刘瀚旻

Advance of potential biomarkers in neonatal sepsis

Yang Cao, Hanmin Liu()   

  • Received:2021-07-29 Revised:2021-11-07 Published:2021-12-01
  • Corresponding author: Hanmin Liu
  • Supported by:
    Key R&D Project of Sichuan Provincial Department of Science and Technology(2019YFS0037)
引用本文:

曹杨, 刘瀚旻. 生物标志物在新生儿脓毒症中的应用研究进展[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(06): 643-649.

Yang Cao, Hanmin Liu. Advance of potential biomarkers in neonatal sepsis[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(06): 643-649.

新生儿脓毒症(NS)是导致新生儿死亡的主要原因之一,其造成的新生儿死亡占比约为16%。根据NS发生时间,可被分为早发型NS(EONS)与晚发型NS(LONS)。由于对NS早期诊断迄今尚缺乏特异度高的生物标志物,导致对NS治疗延迟。为NS早诊断、早治疗,避免相关并发症的发生,研发可在NS早期诊断及预后判断中发挥优势的生物标志物具有至关重要的作用。目前,已经被广泛用于NS临床诊断及预后判断的生物标志物包括血清C反应蛋白(CRP)、降钙素原(PCT)、淀粉样蛋白A (SAA)等。笔者拟就NS分型和临床表现,NS患儿的诊断和治疗,生物标志物在NS诊疗和预后判断研究的最新现状进行阐述。

Neonatal sepsis (NS), remains a major cause of mortality among neonates worldwide, accounting for approximately 16% neonatal mortality. NS is divided into early-onset neonatal sepsis (EONS) and late-onset neonatal sepsis (LONS). Nevertheless, the clinical therapy of NS is usually delayed due to lack of biomarkers with high specificity. Thus, it is crucial to investigate ideal biomarkers for earlier diagnosis and treatment of NS, and avoiding complications of neonates. Biomarkers have been widely used including C-reactive protein (CRP), procalcitonin (PCT) and serum amyloid A (SAA). We are aiming to summarize classifications and clinical characteristics, diagnosis and therapy, and advances of potential biomarkers in NS.

[1]
Shane AL, Sánchez PJ, Stoll BJ. Neonatal sepsis[J]. Lancet2017390(10104):1770-1780. DOI:10.1016/S0140-6736(17)31002-4.
[2]
Kim F, Polin RA, Hooven TA. Neonatal sepsis[J]. BMJ2020371:m3672. DOI:10.1136/bmj.m3672.
[3]
Fleischmann-Struzek C, Goldfarb DM, Schlattmann P,et al. The global burden of paediatric and neonatal sepsis: a systematic review[J]. Lancet Respir Med20186(3):223-230. DOI:10.1016/S2213-2600(18)30063-8.
[4]
Workneh Bitew Z, Worku T, Alemu A. Effects of vitamin D on neonatal sepsis: a systematic review and Meta-analysis[J]. Food Sci Nutr20219(1):375-388. DOI:10.1002/fsn3.2003.
[5]
Berlak N, Shany E, Ben-Shimol S,et al. Late onset sepsis: comparison between coagulase-negative staphylococci and other bacteria in the neonatal intensive care unit [J]. Infect Dis (Lond)201850(10):764-770. DOI:10.1080/23744235.2018.1487075.
[6]
Bourika V, Hantzi E, Michos A,et al. Clinical value of serum amyloid-A protein, high-density lipoprotein cholesterol and apolipoprotein-A1 in the diagnosis and follow-up of neonatal sepsis[J]. Pediatr Infect Dis J202039(8):749-755. DOI:10.1097/INF.0000000000002682.
[7]
Hashem HE, El Masry SA, Mokhtar AM,et al. Valuable role of neutrophil CD64 and highly sensitive CRP biomarkers for diagnostic, monitoring, and prognostic evaluations of sepsis patients in neonatal ICUs[J]. Biomed Res Int20202020:6214363. DOI:10.1155/2020/6214363.
[8]
Chauhan N, Tiwari S, Jain U. Potential biomarkers for effective screening of neonatal sepsis infections: an overview[J]. Microb Pathog2017107:234-242. DOI:10.1016/j.micpath.2017.03.042.
[9]
Malcolmson C, Ng K, Hughes S,et al. Impact of matrix-assisted laser desorption and ionization time-of-flight and antimicrobial stewardship intervention on treatment of bloodstream infections in hospitalized children[J]. J Pediatr Infect Dis Soc20176(2):178-186. DOI:10.1093/jpids/piw033.
[10]
Celik IH, Hanna M, Canpolat FE, et al. Diagnosis of neonatal sepsis: the past, present and future [J]. Pediatr Res, 2022, 91(2): 337-350. DOI: 10.1038/s41390-021-01696-z.
[11]
Stoll BJ, Puopolo KM, Hansen NI,et al. Early-onset neonatal sepsis 2015 to 2017, the rise of Escherichia coli, and the need for novel prevention strategies[J]. JAMA Pediatr2020174(7):e200593. DOI:10.1001/jamapediatrics.2020.0593.
[12]
Esposito S, Principi N. Adjunctive therapy to treat neonatal sepsis[J]. Expert Rev Clin Pharmacol202013(1):65-73. DOI:10.1080/17512433.2020.1699790.
[13]
Leal YA, Álvarez-Nemegyei J, Lavadores-May AI,et al. Cytokine profile as diagnostic and prognostic factor in neonatal sepsis[J]. J Matern Fetal Neonatal Med201932(17):2830-2836. DOI:10.1080/14767058.2018.1449828.
[14]
Raveendran AV, Kumar A, Gangadharan S. Biomarkers and newer laboratory investigations in the diagnosis of sepsis[J]. J R Coll Physicians Edinb201949(3):207-216. DOI:10.4997/JRCPE.2019.308.
[15]
Memar MY, Alizadeh N, Varshochi M,et al. Immunologic biomarkers for diagnostic of early-onset neonatal sepsis[J]. J Matern Fetal Neonatal Med201932(1):143-153. DOI:10.1080/14767058.2017.1366984.
[16]
Balayan S, Chauhan N, Chandra R,et al. Recent advances in developing biosensing based platforms for neonatal sepsis[J]. Biosens Bioelectron2020169:112552. DOI:10.1016/j.bios.2020.112552.
[17]
Pierrakos C, Velissaris D, Bisdorff M,et al. Biomarkers of sepsis: time for a reappraisal[J]. Crit Care202024(1):287. DOI:10.1186/s13054-020-02993-5.
[18]
Brown J, Meader N, Wright K,et al. Assessment of C-reactive protein diagnostic test accuracy for late-onset infection in newborn infants: a systematic review and Meta-analysis[J]. JAMA Pediatr2020174(3):260-268. DOI:10.1001/jamapediatrics.2019.5669.
[19]
Tessema B, Lippmann N, Willenberg A, et al. The diagnostic performance of interleukin-6 and C-reactive protein for early identification of neonatal sepsis [J]. Diagnostics (Basel), 2020, 10(11): 978. DOI: 10.3390/diagnostics10110978.
[20]
Velissaris D, Zareifopoulos N, Lagadinou M,et al. Procalcitonin and sepsis in the Emergency Department: an update[J]. Eur Rev Med Pharmacol Sci202125(1):466-479. DOI:10.26355/eurrev_202101_24416.
[21]
Stocker M, van Herk W, El Helou S,et al. C-reactive protein, procalcitonin, and white blood count to rule out neonatal early-onset sepsis within 36 hours: a secondary analysis of the Neonatal Procalcitonin Intervention Study[J]. Clin Infect Dis202173(2):e383-383e390. DOI:10.1093/cid/ciaa876.
[22]
Yang KD, He Y, Xiao S,et al. Identification of progranulin as a novel diagnostic biomarker for early-onset sepsis in neonates[J]. Eur J Clin Microbiol Infect Dis202039(12):2405-2414. DOI:10.1007/s10096-020-03981-x.
[23]
Bang YJ, Hu Z, Li Y,et al. Serum amyloid A delivers retinol to intestinal myeloid cells to promote adaptive immunity[J]. Science2021373(6561):eabf9232. DOI:10.1126/science.abf9232.
[24]
Bengnér J, Quttineh M, Gäddlin PO,et al. Serum amyloid A - A prime candidate for identification of neonatal sepsis[J]. Clin Immunol2021229:108787. DOI:10.1016/j.clim.2021.108787.
[25]
Meng L, Song Z, Liu A,et al. Effects of lipopolysaccharide-binding protein (LBP) single nucleotide polymorphism (SNP) in infections, inflammatory diseases, metabolic disorders and cancers[J]. Front Immunol202112:681810. DOI:10.3389/fimmu.2021.681810.
[26]
Gradek-Kwinta E, Czyzycki M, Lopatkiewicz AM,et al. Lipopolysaccharide binding protein and sCD14 as risk markers of stroke-associated pneumonia[J]. J Neuroimmunol2021354:577532. DOI:10.1016/j.jneuroim.2021.577532.
[27]
García de Guadiana Romualdo L, Albaladejo Otón MD, Rebollo Acebes S,et al. Diagnostic accuracy of lipopolysaccharide-binding protein for sepsis in patients with suspected infection in the emergency department[J]. Ann Clin Biochem201855(1):143-148. DOI:10.1177/0004563217694378.
[28]
Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression[J]. Nat Rev Nephrol201814(2):121-137. DOI:10.1038/nrneph.2017.165.
[29]
Grondman I, Pirvu A, Riza A,et al. Biomarkers of inflammation and the etiology of sepsis[J]. Biochem Soc Trans202048(1):1-14. DOI:10.1042/BST20190029.
[30]
Cortés JS, Losada PX, Fernández LX, et al. Interleukin-6 as a biomarker of early-onset neonatal sepsis [J]. Am J Perinatol, 2021, 38(S 01): e338-e346. DOI: 10.1055/s-0040-1710010.
[31]
Berka I, Korček P, Straňák Z. C-reactive protein, interleukin-6, and procalcitonin in diagnosis of late-onset bloodstream infection in very preterm infants [J]. J Pediatric Infect Dis Soc, 2021, piab071. DOI: 10.1093/jpids/piab071.
[32]
AbdAllah NB, Toraih EA, Al Ageeli E,et al. MYD88, NFKB1, and IL6 transcripts overexpression are associated with poor outcomes and short survival in neonatal sepsis[J]. Sci Rep202111(1):13374. DOI:10.1038/s41598-021-92912-7.
[33]
Ebenebe CU, Hesse F, Blohm ME,et al. Diagnostic accuracy of interleukin-6 for early-onset sepsis in preterm neonates[J]. J Matern Fetal Neonatal Med202134(2):253-258. DOI:10.1080/14767058.2019.1606194.
[34]
Nakstad B. The diagnostic utility of procalcitonin, interleukin-6 and interleukin-8, and hyaluronic acid in the Norwegian consensus definition for early-onset neonatal sepsis (EONS)[J]. Infect Drug Resist201811:359-368. DOI:10.2147/IDR.S155965.
[35]
Kalayci AG, Adam B, Yilmazer F, et al. The value of immunoglobulin and complement levels in the early diagnosis of neonatal sepsis[J].Acta Paediatr, 1997, 86(9): 999-1002. DOI: 10.1111/j.1651-2227.1997.tb15187.x.
[36]
Omran A, Sobh H, Abdalla MO,et al. Salivary and serum interleukin-10, C-reactive protein, mean platelet volume, and CRP/MPV ratio in the diagnosis of late-onset neonatal sepsis in full-term neonates[J]. J Immunol Res20212021:4884537. DOI:10.1155/2021/4884537.
[37]
Froeschle GM, Bedke T, Boettcher M, et al. T cell cytokines in the diagnostic of early-onset sepsis[J]. Pediatr Res202190(1):191-196. DOI:10.1038/s41390-020-01248-x.
[38]
Chen W, Lai D, Li Y,et al. Neuronal-activated ILC2s promote IL-17A production in lung γδ T cells during sepsis[J]. Front Immunol202112:670676. DOI:10.3389/fimmu.2021.670676.
[39]
Pietrasanta C, Ronchi A, Vener C, et al. Presepsin (Soluble CD14 Subtype) as an early marker of neonatal sepsis and septic shock: a prospective diagnostic trial [J]. Antibiotics (Basel), 2021, 10(5): 580. DOI: 10.3390/antibiotics10050580.
[40]
van Maldeghem I, Nusman CM, Visser DH. Soluble CD14 subtype (sCD14-ST) as biomarker in neonatal early-onset sepsis and late-onset sepsis: a systematic review and Meta-analysis[J]. BMC Immunol201920(1):17. DOI:10.1186/s12865-019-0298-8.
[41]
Hung SK, Lan HM, Han ST, et al. Current evidence and limitation of biomarkers for detecting sepsis and systemic infection [J]. Biomedicines, 2020, 8(11): 494. DOI: 10.3390/biomedicines8110494.
[42]
Kalia N, Singh J, Kaur M. The ambiguous role of mannose-binding lectin (MBL) in human immunity[J]. Open Med (Wars)202116(1):299-310. DOI:10.1515/med-2021-0239.
[43]
Lemańska-Perek A, Adamik B. Fibronectin and its soluble EDA-FN isoform as biomarkers for inflammation and sepsis[J]. Adv Clin Exp Med201928(11):1561-1567. DOI:10.17219/acem/104531.
[44]
Doni A, Mantovani A, Bottazzi B, et al. PTX3 regulation of inflammation, hemostatic response, tissue repair, and resolution of fibrosis favors a role in limiting idiopathic pulmonary fibrosis [J]. Front Immunol, 2021, 12: 676702. DOI: 10.3389/fimmu.2021.676702.
[45]
Lee YT, Gong M, Chau A, et al. Pentraxin-3 as a marker of sepsis severity and predictor of mortality outcomes: a systematic review and Meta-analysis [J]. J Infect, 2018, 76(1): 1-10. DOI: 10.1016/j.jinf.2017.10.016.
[46]
Bourika V, Bartzeliotou A, Spiliopoulou C,et al. Paraoxonase (PON)-1 activity in septic neonates: One more arrow in the quiver of biomarkers of neonatal sepsis?[J]. Clin Biochem202193:119-121. DOI:10.1016/j.clinbiochem.2021.03.019.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 张思平, 刘伟, 马鹏程. 全膝关节置换术后下肢轻度内翻对线对疗效的影响[J]. 中华关节外科杂志(电子版), 2023, 17(06): 808-817.
[3] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[4] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[5] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[6] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[7] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[8] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[9] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(9): 962-967.
[10] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[11] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[12] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[13] 索利斌, 刘鲲鹏, 姚兰, 张华, 魏越, 王军, 陈骏, 苗成利, 罗成华. 原发性腹膜后副神经节瘤切除术麻醉管理的特点和分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 771-776.
[14] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[15] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
阅读次数
全文


摘要