切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2021, Vol. 17 ›› Issue (05) : 510 -515. doi: 10.3877/cma.j.issn.1673-5250.2021.05.003

专题论坛

口腔菌群与儿童常见非口腔性疾病的关系
杨蕾1,1, 肖东琼2,2, 钟亦思3,,3()   
  • 收稿日期:2021-04-11 修回日期:2021-09-22 出版日期:2021-10-01
  • 通信作者: 钟亦思

Current research status between oral microbiome and common non-oral diseases in children

Lei Yang1,1, Dongqiong Xiao2,2, Yisi Zhong3,3,()   

  • Received:2021-04-11 Revised:2021-09-22 Published:2021-10-01
  • Corresponding author: Yisi Zhong
  • Supported by:
    Basic Appiled Research Project of Science and Technology Department of Sichuan Province(2021YJ0229)
引用本文:

杨蕾, 肖东琼, 钟亦思. 口腔菌群与儿童常见非口腔性疾病的关系[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(05): 510-515.

Lei Yang, Dongqiong Xiao, Yisi Zhong. Current research status between oral microbiome and common non-oral diseases in children[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(05): 510-515.

口腔处于人体消化道的最上游,有许多截然不同的微环境,亦是病原体进入人体的主要途径之一。与成年人相比,儿童口腔正常菌群随着生长发育而处于动态变化中,对外界刺激也更为敏感。儿童口腔菌群异常变化,与多种疾病的发生、发展密切相关。因此,通过口腔对儿童进行非侵入性生物样品采集,对某些疾病的快速辅助诊断具有重要意义。笔者拟就儿童口腔菌群的建立及其特点,以及近年对口腔菌群异常变化在儿童哮喘、过敏性紫癜(HSP)、肥胖、阑尾炎和炎症性肠病(IBD)等常见疾病中作用的最新研究进展进行阐述,旨在为儿童非口腔性疾病的辅助诊断提供参考。

Oral cavity is at the uppermost part of human digestive tract. There are many distinct microenvironments in oral cavity, and oral cavity is the main way for pathogens to enter human body. Compared with adults, the oral microbiome in children changes dynamically with body′s growth, and it is more sensitive to external stimulation. The abnormal changes of oral microbiome in children are closely related to occurrence and development of a variety of diseases. Therefore, non-invasive biological samples can be collected through oral cavity to assist in immediate detection and rapid diagnosis of some diseases for children, and it is of great significance. This article summarizes establishment and characteristics of children′s oral microbiome, focuses on research advances in relationship between oral microbiome and children′s some non-oral diseases in recent years, including asthma, Henoch-Schonlein purpura (HSP), obesity, appendicitis and inflammatory bowel disease (IBD), in order to provide evidences for auxiliary diagnosis of children′s some non-oral diseases.

表1 与儿童哮喘相关的口腔菌群
表2 与过敏性紫癜患儿相关的口腔菌群
表3 与儿童肥胖相关的口腔菌群
表4 与阑尾炎患儿相关的口腔菌群
表5 与炎症性肠病患儿相关的口腔菌群
[1]
Xiao J, Fiscella KA, Gill SR.Oral microbiome: possible harbinger for children′s health[J]. Int J Oral Sci, 2020, 12(1): 12. DOI: 10.1038/s41368-020-0082-x.
[2]
Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome[J]. Arch Microbiol, 2018, 200(4): 525-540. DOI: 10.1007/s00203-018-1505-3.
[3]
Yumoto HHK, Hirao K, Ninomiya M, et al. The pathogenic factors from oral Streptococci for systemic diseases[J]. Int J Mol Sci, 2019, 20(18): 4571. DOI: 10.3390/ijms20184571.
[4]
Willis JR, Gabaldón T. The human oral microbiome in health and disease: from sequences to ecosystems[J]. Microorganisms, 2020, 8(2): 308. DOI: 10.3390/microorganisms8020308.
[5]
Xun Z, Zhang Q, Xu T, et al. Dysbiosis and ecotypes of the salivary microbiome associated with inflammatory bowel diseases and the assistance in diagnosis of diseases using oral bacterial profiles[J]. Front Microbiol, 2018, 9: 1136. DOI: 10.3389/fmicb.2018.01136.
[6]
Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life[J]. Cell Bost Microbe, 2015, 17(5): 690-703. DOI: 10.1016/j.chom.2015.04.004.
[7]
Fakhruddin KS, Ngo HC, Samaranayake LP. Cariogenic microbiome and microbiota of the early primary dentition: a contemporary overview[J]. Oral Dis, 2019, 25(4): 982-995. DOI: 10.1111/odi.12932.
[8]
Silva MJ, Riggs E, Kilpatrick NM. Getting ahead of the oral health game: it starts before we′re born?[J]. Aust Dent J, 2019, 64(Suppl 1): S4-S9. DOI: 10.1111/adj.12672.
[9]
Amir M, Brown JA, Rager SL, et al. Maternal microbiome and infections in pregnancy[J]. Microorganisms, 2020, 8(12): 1996. DOI: 10.3390/microorganisms8121996.
[10]
邹静,周学东. 儿童口腔正常微生物群早期定植研究概述[J]. 中华儿科杂志2003, 41(3): 193-195. DOI: 10.3760/cma.j.issn.0578-1310.2003.03.116.
[11]
Nardi GM, Grassi R, Ndokaj A, et al. Maternal and neonatal oral microbiome developmental patterns and correlated factors: a systematic review-does the apple fall close to the tree?[J]. Int J Environ Health Res, 2021, 18(11): 5569. DOI: 10.3390/ijerph18115569.
[12]
Gomez A, Nelson KE. The oral microbiome of children: development, disease, and implications beyond oral health[J]. Microb Ecol, 2017, 73(2): 492-503. DOI: 10.1007/s00248-016-0854-1.
[13]
Dzidic M, Abrahamsson TR, Artacho A, et al. Oral microbiota maturation during the first 7 years of life in relation to allergy development[J]. Allergy, 2018, 73(10): 2000-2011. DOI: 10.1111/all.13449.
[14]
Ahn J, Chen CY, Hayes RB. Oral microbiome and oral and gastrointestinal cancer risk[J]. Can Caus Control, 2012, 23(3): 399-404. DOI: 10.1007/s10552-011-9892-7.
[15]
Arafa A, Aldahlawi S, Fathi A. Assessment of the oral health status of asthmatic children[J]. Eur J Gen Dent, 2017, 11(3): 357-363. DOI: 10.4103/ejd.ejd_65_17.
[16]
Rossi GA, Pohunek P, Feleszko W, et al. Viral infections and wheezing-asthma inception in childhood: is there a role for immunomodulation by oral bacterial lysates?[J]. Clin Transl Allergy, 2020, 10: 17. DOI: 10.1186/s13601-020-00322-1.
[17]
Son JH, Kim JH, Chang HS, et al. Relationship of microbial profile with airway immune response in eosinophilic or neutrophilic inflammation of asthmatics[J]. Allerg Asthm Immunol Res, 2020, 12(3): 412-429. DOI: 10.4168/aair.2020.12.3.412.
[18]
Huang YJ, Nariya S, Harris JM, et al. The airway microbiome in patients with severe asthma: associations with disease features and severity[J]. J Investig Allergol Clin Immunol, 2015, 136(4): 874-884. DOI: 10.1016/j.jaci.2015.05.044.
[19]
Hetland LE, Susrud KS, Lindahl KH, et al. Henoch-Schönlein purpura: a literature review[J]. Acta Derm Venereol, 2017, 97(10):1160-1166. DOI: 10.2340/00015555-2733.
[20]
Chen B, Wang J, Wang Y, et al. Oral microbiota dysbiosis and its association with Henoch-Schönlein purpura in children[J]. Int Immunopharmacol, 2018, 65: 295-302. DOI: 10.1016/j.intimp.2018.10.017.
[21]
Xiong LJ, Tong Y, Wang ZL, et al. Is helicobacter pylori infection associated with Henoch-Schonlein purpura in Chinese children? A Meta-analysis[J]. World J Pediatr, 2012, 8(4): 301-308. DOI: 10.1007/s12519-012-0373-1.
[22]
Wang JJ, Xu Y, Liu FF, et al. Association of the infectious triggers with childhood Henoch-Schonlein purpura in Anhui Province, China [J]. J Infect Public Health, 2020, 13(1): 110-117. DOI: 10.1016/j.jiph.2019.07.004.
[23]
Fyhrquist N, Ruokolainen L, Suomalainen A, et al. Acinetobacter species in the skin microbiota protect against allergic sensitization and inflammation[J]. J Clin Lab Immunol, 2014, 134(6): 1301.e11-1309.e11. DOI: 10.1016/j.jaci.2014.07.059.
[24]
Castro E, Edland SD, Lee L, et al. Polymorphisms at the Werner locus: II. 1074Leu/Phe, 1367Cys/Arg, longevity, and atherosclerosis[J]. Am J Med Genet, 2000, 95(4): 374-380. DOI: 10.1002/1096-8628(20001211)95:43.0.CO;2-4.
[25]
Indiani CMSP, Rizzardi KF, Crescente CL, et al. Relationship between mutans Streptococci and Lactobacilli in the oral cavity and intestine of obese and eutrophic children with early childhood caries-preliminary findings of a cross-sectional study[J]. Front Pediatr, 2020, 8: 588965. DOI: 10.3389/fped.2020.588965.
[26]
Araujo DS, Klein MI, Scudine KGO, et al. Salivary microbiological and gingival health status evaluation of adolescents with overweight and obesity: a cluster analysis[J]. Front Pediatr, 2020, 8: 429. DOI: 10.3389/fped.2020.00429.
[27]
Wu Y, Chi X, Zhang Q, et al. Characterization of the salivary microbiome in people with obesity[J]. Peer J, 2018, 6: e4458. DOI: 10.7717/peerj.4458.
[28]
Craig SJC, Blankenberg D, Parodi ACL, et al. Child weight gain trajectories linked to oral microbiota composition[J]. Sci Rep, 2018, 8(1): 14030. DOI: 10.1038/s41598-018-31866-9.
[29]
Roa I, Del Sol M. Obesity, salivary glands and oral pathology[J]. Colomb Med (Cali), 201849(4): 280-287. DOI: 10.25100/cm.v49i3.3919.
[30]
Richardson M, Ren J, Rubinstein MR, et al. Analysis of 16S rRNA genes reveals reduced fusobacterial community diversity when translocating from saliva to GI sites[J]. Gut Microb, 2020, 12(1): 1-13. DOI: 10.1080/19490976.2020.1814120.
[31]
Blod C, Schlichting N, Schülin S, et al. The oral microbiome-the relevant reservoir for acute pediatric appendicitis?[J]. Int J Colorectal Dis, 2018, 33(2): 209-218. DOI: 10.1007/s00384-017-2948-8.
[32]
Bertola EA, Simonetti GD, Del Giorno R, et al. Extrarenal immune-mediated disorders linked with acute poststreptococcal glomerulonephritis: a systematic review[J]. Clin Rev Allergy Immunol, 2019, 57(2): 294-302. DOI: 10.1007/s12016-019-08761-w.
[33]
Tjalsma H, Boleij A, Marchesi JR, et al. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects[J]. Nat Rev Microbiol, 2012, 10(8): 575-582. DOI: 10.1038/nrmicro2819.
[34]
Gao L, Xu T, Huang G, et al. Oral microbiomes: more and more importance in oral cavity and whole body[J]. Protein Cell, 2018, 9(5): 488-500. DOI: 10.1007/s13238-018-0548-1.
[35]
Atarashi K, Suda W, Luo C, et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation[J]. Science, 2017, 358(6361): 359-365. DOI: 10.1126/science.aan4526.
[36]
Rojas-Feria M, Romero-García T, Caballero-Rico JÁF, et al. Modulation of faecal metagenome in Crohn′s disease: role of microRNAs as biomarkers[J]. World J Gastroenterol, 2018, 24(46): 5223. DOI: 10.3748/wjg.v24.i46.5223.
[37]
Nishino K, Nishida A, Inoue R, et al. Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease[J]. Gastroenterol, 2018, 53(1): 95-106. DOI: 10.1007/s00535-017-1384-4.
[38]
Dickson I. Oral bacteria: a cause of IBD?[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 4-5. DOI: 10.1038/nrgastro.2017.161.
[39]
Integrative HMP, Proctor LM, Creasy HH, et al. The integrative human microbiome project[J]. Nature, 2019, 569(7758): 641-648. DOI: 10.1038/s41586-019-1238-8.
[40]
Lloyd-Price J, Arze C, Ananthakrishnan AN, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases[J]. Nature, 2019, 569(7758): 655-662. DOI: 10.1038/s41586-019-1237-9.
[41]
Docktor MJ, Paster BJ, Abramowicz S, et al. Alterations in diversity of the oral microbiome in pediatric inflammatory bowel disease[J]. Inflamm Bowel Dis, 2012, 18(5): 935-942. DOI: 10.1002/ibd.21874.
[1] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[2] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[3] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[4] 刘婷婷, 林妍冰, 汪珊, 陈幕荣, 唐子鉴, 代东伶, 夏焙. 超声衰减参数成像评价儿童代谢相关脂肪性肝病的价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 787-794.
[5] 周钰菡, 肖欢, 唐毅, 杨春江, 周娟, 朱丽容, 徐娟, 牟芳婷. 超声对儿童髋关节暂时性滑膜炎的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 795-800.
[6] 米洁, 陈晨, 李佳玲, 裴海娜, 张恒博, 李飞, 李东杰. 儿童头面部外伤特点分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 511-515.
[7] 中华医学会烧伤外科学分会小儿烧伤学组. 儿童烧伤早期休克液体复苏专家共识(2023版)[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 371-376.
[8] 吴少峰, 张轶男, 孙杰. 机器人辅助手术在儿童微创泌尿手术中的应用和展望[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 440-444.
[9] 朱良振, 于永刚, 陈杲, 廖松柏. 儿童高级别闭合性肾损伤肾动脉栓塞与手术探查的疗效比较[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 461-465,475.
[10] 王蕾, 王少华, 牛海珍, 尹腾飞. 儿童腹股沟疝围手术期风险预警干预[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 768-772.
[11] 李芳, 许瑞, 李洋洋, 石秀全. 循证医学理念在儿童腹股沟疝患者中的应用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 782-786.
[12] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[13] 卓少宏, 林秀玲, 周翠梅, 熊卫莲, 马兴灶. CD64指数、SAA/CRP、PCT联合检测在小儿消化道感染性疾病鉴别诊断中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 505-509.
[14] 刘笑笑, 张小杉, 刘群, 马岚, 段莎莎, 施依璐, 张敏洁, 王雅晳. 中国学龄前儿童先天性心脏病流行病学研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1021-1024.
[15] 李静, 张玲玲, 邢伟. 兴趣诱导理念用于小儿手术麻醉诱导前的价值及其对家属满意度的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 812-817.
阅读次数
全文


摘要