切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2021, Vol. 17 ›› Issue (04) : 373 -379. doi: 10.3877/cma.j.issn.1673-5250.2021.04.001

专题论坛

早产儿生命早期肺发育轨迹研究现状
张海洋, 刘瀚旻()   
  • 收稿日期:2021-03-11 修回日期:2021-07-13 出版日期:2021-08-01
  • 通信作者: 刘瀚旻

Current research status on developmental trajectory of lung in premature infants

Haiyang Zhang, Hanmin Liu()   

  • Received:2021-03-11 Revised:2021-07-13 Published:2021-08-01
  • Corresponding author: Hanmin Liu
  • Supported by:
    Key Research and Development Project of Sichuan Science and Technology Department(2019YFS0037)
引用本文:

张海洋, 刘瀚旻. 早产儿生命早期肺发育轨迹研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2021, 17(04): 373-379.

Haiyang Zhang, Hanmin Liu. Current research status on developmental trajectory of lung in premature infants[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(04): 373-379.

人体肺发育成熟沿着固定轨迹进行。生命早期的多种影响因素,均可能导致该轨迹发生改变,从而改变患儿呼吸系统的发育结局。早产儿肺功能检测可以动态、准确、无创、早期、重复评估其呼吸系统状态,了解其生命早期肺功能特点。对早产儿肺发育轨迹特点的研究,有助于更好理解其呼吸系统发育规律及向成年人时期肺功能过渡的特点。笔者拟就早产儿肺发育轨迹模式、早产儿肺发育追赶性生长、早产儿生命早期影响因素对肺发育轨迹的影响及其他相关研究等的最新进展进行阐述。

The development and maturation of human lung follows a fixed trajectory, and a variety of influencing factors in early life may lead to changes in this trajectory, thus changing the developmental outcomes of children′s respiratory system. Lung function test of premature infants can dynamically, accurately, non-invasively, early and repeatedly assess respiratory system status and understand characteristics of lung function in early life. Study on characteristics of premature infants′ lung development trajectory is helpful to better understand their respiratory system development and characteristics of their lung function transition to adult. This paper summarizes the trajectory pattern of premature infants′ lung development, and catch-up growth of premature infants′ lung development, influence factors of early life on trajectory of premature infants′ lung development and maturation, and other related studies.

[1]
Crump C, Sundquist J, Winkleby MA, et al. Gestational age at birth and mortality from infancy into mid-adulthood: a national cohort study[J]. Lancet Child Adolesc Health, 2019, 3(6): 408-417. DOI: 10.1016/S2352-4642(19)30108-7.
[2]
Grant T, Brigham EP, McCormack MC. Childhood origins of adult lung disease as opportunities for prevention[J]. J Allergy Clin Immunol Pract, 2020, 8(3): 849-858. DOI: 10.1016/j.jaip.2020.01.015.
[3]
Gibbons J, Wilson AC, Simpson SJ. Predicting lung health trajectories for survivors of preterm birth[J]. Front Pediatr, 2020, 8: 318. DOI: 10.3389/fped.2020.00318.
[4]
Bui DS, Lodge CJ, Burgess JA, et al. Childhood predictors of lung function trajectories and future COPD risk: a prospective cohort study from the first to the sixth decade of life[J]. Lancet Respir Med, 2018, 6(7): 535-544. DOI: 10.1016/S2213-2600(18)30100-0.
[5]
Levin JC, Sheils CA, Gaffin JM, et al. Lung function trajectories in children with post-prematurity respiratory disease: identifying risk factors for abnormal growth[J]. Respir Res, 2021, 22(1): 143. DOI: 10.1186/s12931-021-01720-0.
[6]
Kaczmarczyk K, Wiszomirska I, Szturmowicz M, et al. Are preterm-born survivors at risk of long-term respiratory disease?[J]. Ther Adv Respir Dis, 2017, 11(7): 277-287. DOI: 10.1177/1753465817710595.
[7]
Doyle LW, Andersson S, Bush A, et al. Expiratory airflow in late adolescence and early adulthood in individuals born very preterm or with very low birthweight compared with controls born at term or with normal birthweight: a Meta-analysis of individual participant data[J]. Lancet Respir Med, 2019, 7(8): 677-686. DOI: 10.1016/S2213-2600(18)30530-7.
[8]
Watterberg KL, Demers LM, Scott SM, et al. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops[J]. Pediatrics, 1996, 97(2): 210-215.
[9]
Sarno L, Della Corte L, Saccone G, et al. Histological chorioamnionitis and risk of pulmonary complications in preterm births: a systematic review and Meta-analysis[J]. J Matern Fetal Neonatal Med, 2019: 1-10. DOI: 10.1080/14767058.2019.1689945.
[10]
Perniciaro S, Casarin J, Nosetti L, et al. Early- and late-respiratory outcome in very low birth weight with or without intrauterine inflammation[J]. Am J Perinatol, 2020, 37(S02): S76-S83. DOI: 10.1055/s-0040-1714257.
[11]
Liu PC, Hung YL, Shen CM, et al. Histological chorioamnionitis and its impact on respiratory outcome in very-low-birth-weight preterm infants[J]. Pediatr Neonatol, 2021, 62(3): 258-264. DOI: 10.1016/j.pedneo.2020.11.009.
[12]
Vardavas CI, Hohmann C, Patelarou E, et al. The independent role of prenatal and postnatal exposure to active and passive smoking on the development of early wheeze in children[J]. Eur Respir J, 2016, 48(1): 115-124. DOI: 10.1183/13993003.01016-2015.
[13]
Hoo AF, Henschen M, Dezateux C, et al. Respiratory function among preterm infants whose mothers smoked during pregnancy[J]. Am J Respir Crit Care Med, 1998, 158(3): 700-705. DOI: 10.1164/ajrccm.158.3.9711057.
[14]
Faber T, Kumar A, Mackenbach JP, et al. Effect of tobacco control policies on perinatal and child health: a systematic review and Meta-analysis[J]. Lancet Public Health, 2017, 2(9): e420-e437. DOI: 10.1016/S2468-2667(17)30144-5.
[15]
McEvoy CT, Shorey-Kendrick LE, Milner K, et al. Oral vitamin C (500 mg/d) to pregnant smokers improves infant airway function at 3 months (VCSIP). A randomized trial[J]. Am J Respir Crit Care Med, 2019, 199(9): 1139-1147. DOI: 10.1164/rccm.201805-1011OC.
[16]
McEvoy CT, Shorey-Kendrick LE, Milner K, et al. Vitamin C to pregnant smokers persistently improves infant airway function to 12 months of age: a randomised trial[J]. Eur Respir J, 2020: 1902208. DOI: 10.1183/13993003.02208-2019.
[17]
Farrar D, Simmonds M, Bryant M, et al. Hyperglycaemia and risk of adverse perinatal outcomes: systematic review and Meta-analysis[J]. BMJ, 2016, 354: i4694. DOI: 10.1136/bmj.i4694.
[18]
Hitaka D, Morisaki N, Miyazono Y, et al. Neonatal outcomes of very low birthweight infants born to mothers with hyperglycaemia in pregnancy: a retrospective cohort study in Japan[J]. BMJ Paediatr Open, 2019, 3(1): e000491. DOI: 10.1136/bmjpo-2019-000491.
[19]
Werner EF, Romano ME, Rouse DJ, et al. Association of gestational diabetes mellitus with neonatal respiratory morbidity[J]. Obstet Gynecol, 2019, 133(2): 349-353. DOI: 10.1097/AOG.0000000000003053.
[20]
Fan G, Wang B, Liu C, et al. Prenatal paracetamol use and asthma in childhood: a systematic review and Meta-analysis[J]. Allergol Immunopathol (Madr), 2017, 45(6): 528-533. DOI: 10.1016/j.aller.2016.10.014.
[21]
Magnus MC, Karlstad Ø, Håberg SE, et al. Prenatal and infant paracetamol exposure and development of asthma: the Norwegian Mother and Child Cohort Study[J]. Int J Epidemiol, 2016, 45(2): 512-522. DOI: 10.1093/ije/dyv366.
[22]
Piler P, Švancara J, Kukla L, et al. Role of combined prenatal and postnatal paracetamol exposure on asthma development: the Czech ELSPAC study[J]. J Epidemiol Community Health, 2018, 72(4): 349-355. DOI: 10.1136/jech-2017-209960.
[23]
Liew Z, Ernst A. Intrauterine exposure to acetaminophen and adverse developmental outcomes: epidemiological findings and methodological issues[J]. Curr Environ Health Rep, 2021, 8(1): 23-33. DOI: 10.1007/s40572-020-00301-5.
[24]
Popovic M, Rusconi F, Zugna D, et al. Prenatal exposure to antibiotics and wheezing in infancy: a birth cohort study[J]. Eur Respir J, 2016, 47(3): 810-817. DOI: 10.1183/13993003.00315-2015.
[25]
Momen NC, Liu X. Maternal antibiotic use during pregnancy and asthma in children: population-based cohort study and sibling design[J]. Eur Respir J, 2021, 57(1): 2000937. DOI: 10.1183/13993003.00937-2020.
[26]
Go M, Schilling D, Nguyen T, et al. Respiratory compliance in late preterm infants (340/7-346/7 weeks) after antenatal steroid therapy[J]. J Pediatr, 2018, 201: 21-26. DOI: 10.1016/j.jpeds.2018.05.037.
[27]
McEvoy C, Schilling D, Spitale P, et al. Pulmonary function and outcomes in infants randomized to a rescue course of antenatal steroids[J]. Pediatr Pulmonol, 2017, 52(9): 1171-1178. DOI: 10.1002/ppul.23711.
[28]
Simpson SJ, Logie KM, O′Dea CA, et al. Altered lung structure and function in mid-childhood survivors of very preterm birth[J]. Thorax, 2017, 72(8): 702-711. DOI: 10.1136/thoraxjnl-2016-208985.
[29]
Turitz AL, Gyamfi-Bannerman C. Comparison of respiratory outcomes between preterm small-for-gestational-age and appropriate-for-gestational-age infants[J]. Am J Perinatol, 2017, 34(3): 283-288. DOI: 10.1055/s-0036-1586755.
[30]
Kuiper-Makris C, Zanetti D, Vohlen C, et al. Mendelian randomization and experimental IUGR reveal the adverse effect of low birth weight on lung structure and function[J]. Sci Rep, 2020, 10(1): 22395. DOI: 10.1038/s41598-020-79245-7.
[31]
Kim YH, Kim KW, Eun HS, et al. Small for gestational age birth may increase airflow limitation in bronchopulmonary dysplasia[J]. Pediatr Pulmonol, 2020, 55(2): 346-353. DOI: 10.1002/ppul.24580.
[32]
Jensen EA, Foglia EE, Dysart KC, et al. Adverse effects of small for gestational age differ by gestational week among very preterm infants[J]. Arch Dis Child Fetal Neonatal Ed, 2019, 104(2): F192-F198. DOI: 10.1136/archdischild-2017-314171.
[33]
Yang J, Kingsford RA, Horwood J, et al. Lung function of adults born at very low birth weight[J]. Pediatrics, 2020, 145(2): e20192359. DOI: 10.1542/peds.2019-2359.
[34]
Charles E, Hunt KA, Harris C, et al. Small for gestational age and extremely low birth weight infant outcomes[J]. J Perinat Med, 2019, 47(2): 247-251. DOI: 10.1515/jpm-2018-0295.
[35]
Thibaut F, Chagraoui A, Buckley L, et al. WFSBP * and IAWMH ** Guidelines for the treatment of alcohol use disorders in pregnant women[J]. World J Biol Psychiatry, 2019, 20(1): 17-50. DOI: 10.1080/15622975.2018.1510185.
[36]
Carson G, Cox LV, Crane J, et al. No. 245-alcohol use and pregnancy consensus clinical guidelines[J]. J Obstet Gynaecol Can, 2017, 39(9): e220-e254. DOI: 10.1016/j.jogc.2017.06.005.
[37]
Sundermann AC, Velez Edwards DR, Slaughter JC, et al. Week-by-week alcohol consumption in early pregnancy and spontaneous abortion risk: a prospective cohort study[J]. Am J Obstet Gynecol, 2021, 224(1): 97.e1-97.e16. DOI: 10.1016/j.ajog.2020.07.012.
[38]
汪正园,宋峻,黄翠花,等. 上海市614名孕妇饮酒行为及其对子女饮酒期望的研究[J]. 中国健康教育2016, 32(4): 341-343, 348. DOI: 10.16168/j.cnki.issn.1002-9982.2016.04.012.
[39]
Gauthier TW, Brown LA. In utero alcohol effects on foetal, neonatal and childhood lung disease[J]. Paediatr Respir Rev, 2017, 21: 34-37. DOI: 10.1016/j.prrv.2016.08.006.
[40]
Gray D, Willemse L, Visagie A, et al. Determinants of early-life lung function in African infants[J]. Thorax, 2017, 72(5): 445-450. DOI: 10.1136/thoraxjnl-2015-207401.
[41]
Muggli E, Matthews H, Penington A, et al. Association between prenatal alcohol exposure and craniofacial shape of children at 12 months of age[J]. JAMA Pediatr, 2017, 171(8): 771-780. DOI: 10.1001/jamapediatrics.2017.0778.
[42]
Balansky R, Ganchev G, Iltcheva M, et al. Interactions between ethanol and cigarette smoke in a mouse lung carcinogenesis model[J]. Toxicology, 2016, 373: 54-62. DOI: 10.1016/j.tox.2016.11.008.
[43]
Pérez-Tarazona S, Rueda Esteban S, García-García ML, et al. Respiratory outcomes of " new" bronchopulmonary dysplasia in adolescents: a multicenter study[J]. Pediatr Pulmonol, 2021, 56(5): 1205-1214. DOI: 10.1002/ppul.25226.
[44]
Lai SH, Chiang MC, Chu SM, et al. Evolution and determinants of lung function until late infancy among infants born preterm[J]. Sci Rep, 2020, 10(1): 490. DOI: 10.1038/s41598-019-57359-x.
[45]
Näsänen-Gilmore P, Sipola-Leppänen M, Tikanmäki M, et al. Lung function in adults born preterm[J]. PLoS One, 2018, 13(10): e0205979. DOI: 10.1371/journal.pone.0205979.
[46]
Vrijlandt EJLE, Reijneveld SA, Aris-Meijer JL, et al. Respiratory health in adolescents born moderately-late preterm in a community-based cohort[J]. J Pediatr, 2018, 203: 429-436. DOI: 10.1016/j.jpeds.2018.07.083.
[47]
Liu L, Pan Y, Zhu Y, et al. Association between rhinovirus wheezing illness and the development of childhood asthma: a Meta-analysis[J]. BMJ Open, 2017, 7(4): e013034. DOI: 10.1136/bmjopen-2016-013034.
[48]
Kitcharoensakkul M, Bacharier LB, Schweiger TL, et al. Lung function trajectories and bronchial hyperresponsiveness during childhood following severe RSV bronchiolitis in infancy[J]. Pediatr Allergy Immunol, 2021, 32(3): 457-464. DOI: 10.1111/pai.13399.
[49]
Scheltema NM, Nibbelke EE, Pouw J, et al. Respiratory syncytial virus prevention and asthma in healthy preterm infants: a randomised controlled trial[J]. Lancet Respir Med, 2018, 6(4): 257-264. DOI: 10.1016/S2213-2600(18)30055-9.
[50]
Drysdale SB, Alcazar M, Wilson T, et al. Functional and genetic predisposition to rhinovirus lower respiratory tract infections in prematurely born infants[J]. Eur J Pediatr, 2016, 175(12): 1943-1949. DOI: 10.1007/s00431-016-2780-0.
[51]
Hasegawa K, Mansbach JM, Bochkov YA, et al. Association of rhinovirus C bronchiolitis and immunoglobulin E sensitization during infancy with development of recurrent wheeze[J]. JAMA Pediatr, 2019, 173(6): 544-552. DOI: 10.1001/jamapediatrics.2019.0384.
[52]
Aldana-Aguirre JC, Pinto M, Featherstone RM, et al. Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: a systematic review and Meta-analysis[J]. Arch Dis Child Fetal Neonatal Ed, 2017, 102(1): F17-F23. DOI: 10.1136/archdischild-2015-310299.
[53]
Simpson SJ, Turkovic L, Wilson AC, et al. Lung function trajectories throughout childhood in survivors of very preterm birth: a longitudinal cohort study[J]. Lancet Child Adolesc Health, 2018, 2(5): 350-359. DOI: 10.1016/S2352-4642(18)30064-6.
[54]
Dylag AM, Kopin HG, O′Reilly MA, et al. Early neonatal oxygen exposure predicts pulmonary morbidity and functional deficits at 1 year[J]. J Pediatr, 2020, 223: 20-28.e2. DOI: 10.1016/j.jpeds.2020.04.042.
[55]
于梅,黄金华,朱蓉,等. 枸橼酸咖啡因治疗对呼吸暂停早产儿早期肺功能的影响[J]. 中国当代儿科杂志2016, 18(3): 206-210. DOI: 10.7499/j.issn.1008-8830.2016.03.003.
[56]
Sanchez-Solis M, Garcia-Marcos PW, Agüera-Arenas J, et al. Impact of early caffeine therapy in preterm newborns on infant lung function[J]. Pediatr Pulmonol, 2020, 55(1): 102-107. DOI: 10.1002/ppul.24540.
[57]
Doyle LW, Ranganathan S, Cheong J. Neonatal caffeine treatment and respiratory function at 11 years in children under 1,251 g at birth[J]. Am J Respir Crit Care Med, 2017, 196(10): 1318-1324. DOI: 10.1164/rccm.201704-0767OC.
[58]
Harris C, Crichton S, Zivanovic S, et al. Effect of dexamethasone exposure on the neonatal unit on the school age lung function of children born very prematurely[J]. PLoS One, 2018, 13(7): e0200243. DOI: 10.1371/journal.pone.0200243.
[59]
Tukova J, Smisek J, Zlatohlavkova B, et al. Early inhaled budesonide in extremely preterm infants decreases long-term respiratory morbidity[J]. Pediatr Pulmonol, 2020, 55(5): 1124-1130. DOI: 10.1002/ppul.24704.
[1] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[2] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[3] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[4] 马锦芳, 何正光, 郑劲平. 盐酸氨溴索雾化吸入治疗慢性阻塞性肺疾病黏痰症患者的疗效和安全性分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 568-574.
[5] 程炜炜, 张青, 张诚实, 冯契靓, 陈荣荣, 赵云峰. 全身免疫炎症指数与慢性阻塞性肺疾病急性加重期病情严重程度相关性分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 580-584.
[6] 杨万荣, 任治坤, 时新颍. 沙丁胺醇雾化吸入脾多肽治疗AECOPD的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 609-612.
[7] 赖乾德, 吕相琴, 蔺洋, 刘媛梅, 赵春艳, 李琦. 肝素结合蛋白对慢性阻塞性肺疾病预后预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 613-616.
[8] 王微, 丁霖, 陈茜, 呼延欣, 闫蓓. 综合治疗对慢性阻塞性肺疾病的疗效及转归影响分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 621-624.
[9] 方晓玉, 王婷, 赵珊, 陈锋. HALP指数对AECOPD并发呼吸衰竭患者ICU结局的预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 639-641.
[10] 郭少琳, 郭建英, 左秀萍, 高苗. 慢性阻塞性肺疾病康复训练依从性影响因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 652-654.
[11] 白若靖, 郭军. 维生素D对肺部疾病临床意义的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 659-662.
[12] 魏丁, 乔艳艳, 顾兴, 张燕, 李艳燕, 钱卫生, 潘蕾, 高永恒, 金发光. 体外膜肺氧合救治急性呼吸窘迫综合征不良预后危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 363-367.
[13] 王晓霞, 乌丹, 张江英, 乌雅罕, 郝颖楠, 斯日古楞. 《2023 年美国胸科学会关于成人急性呼吸窘迫综合征患者管理的临床实践指南更新》解读[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 338-343.
[14] 杨东星, 沈鹏, 赵慧颖. 免疫球蛋白联合依库珠单抗治疗GBS 并发重度ARDS 患者一例[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 404-408.
[15] 李茂军, 唐彬秩, 吴青, 阳倩, 梁小明, 邹福兰, 黄蓉, 陈昌辉. 新生儿呼吸窘迫综合征的管理:多国指南/共识及RDS-NExT workshop 共识陈述简介和评价[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 607-617.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?