[1] |
Crump C, Sundquist J, Winkleby MA, et al. Gestational age at birth and mortality from infancy into mid-adulthood: a national cohort study[J]. Lancet Child Adolesc Health, 2019, 3(6): 408-417. DOI: 10.1016/S2352-4642(19)30108-7.
|
[2] |
Grant T, Brigham EP, McCormack MC. Childhood origins of adult lung disease as opportunities for prevention[J]. J Allergy Clin Immunol Pract, 2020, 8(3): 849-858. DOI: 10.1016/j.jaip.2020.01.015.
|
[3] |
Gibbons J, Wilson AC, Simpson SJ. Predicting lung health trajectories for survivors of preterm birth[J]. Front Pediatr, 2020, 8: 318. DOI: 10.3389/fped.2020.00318.
|
[4] |
Bui DS, Lodge CJ, Burgess JA, et al. Childhood predictors of lung function trajectories and future COPD risk: a prospective cohort study from the first to the sixth decade of life[J]. Lancet Respir Med, 2018, 6(7): 535-544. DOI: 10.1016/S2213-2600(18)30100-0.
|
[5] |
Levin JC, Sheils CA, Gaffin JM, et al. Lung function trajectories in children with post-prematurity respiratory disease: identifying risk factors for abnormal growth[J]. Respir Res, 2021, 22(1): 143. DOI: 10.1186/s12931-021-01720-0.
|
[6] |
Kaczmarczyk K, Wiszomirska I, Szturmowicz M, et al. Are preterm-born survivors at risk of long-term respiratory disease?[J]. Ther Adv Respir Dis, 2017, 11(7): 277-287. DOI: 10.1177/1753465817710595.
|
[7] |
Doyle LW, Andersson S, Bush A, et al. Expiratory airflow in late adolescence and early adulthood in individuals born very preterm or with very low birthweight compared with controls born at term or with normal birthweight: a Meta-analysis of individual participant data[J]. Lancet Respir Med, 2019, 7(8): 677-686. DOI: 10.1016/S2213-2600(18)30530-7.
|
[8] |
Watterberg KL, Demers LM, Scott SM, et al. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops[J]. Pediatrics, 1996, 97(2): 210-215.
|
[9] |
Sarno L, Della Corte L, Saccone G, et al. Histological chorioamnionitis and risk of pulmonary complications in preterm births: a systematic review and Meta-analysis[J]. J Matern Fetal Neonatal Med, 2019: 1-10. DOI: 10.1080/14767058.2019.1689945.
|
[10] |
Perniciaro S, Casarin J, Nosetti L, et al. Early- and late-respiratory outcome in very low birth weight with or without intrauterine inflammation[J]. Am J Perinatol, 2020, 37(S02): S76-S83. DOI: 10.1055/s-0040-1714257.
|
[11] |
Liu PC, Hung YL, Shen CM, et al. Histological chorioamnionitis and its impact on respiratory outcome in very-low-birth-weight preterm infants[J]. Pediatr Neonatol, 2021, 62(3): 258-264. DOI: 10.1016/j.pedneo.2020.11.009.
|
[12] |
Vardavas CI, Hohmann C, Patelarou E, et al. The independent role of prenatal and postnatal exposure to active and passive smoking on the development of early wheeze in children[J]. Eur Respir J, 2016, 48(1): 115-124. DOI: 10.1183/13993003.01016-2015.
|
[13] |
Hoo AF, Henschen M, Dezateux C, et al. Respiratory function among preterm infants whose mothers smoked during pregnancy[J]. Am J Respir Crit Care Med, 1998, 158(3): 700-705. DOI: 10.1164/ajrccm.158.3.9711057.
|
[14] |
Faber T, Kumar A, Mackenbach JP, et al. Effect of tobacco control policies on perinatal and child health: a systematic review and Meta-analysis[J]. Lancet Public Health, 2017, 2(9): e420-e437. DOI: 10.1016/S2468-2667(17)30144-5.
|
[15] |
McEvoy CT, Shorey-Kendrick LE, Milner K, et al. Oral vitamin C (500 mg/d) to pregnant smokers improves infant airway function at 3 months (VCSIP). A randomized trial[J]. Am J Respir Crit Care Med, 2019, 199(9): 1139-1147. DOI: 10.1164/rccm.201805-1011OC.
|
[16] |
McEvoy CT, Shorey-Kendrick LE, Milner K, et al. Vitamin C to pregnant smokers persistently improves infant airway function to 12 months of age: a randomised trial[J]. Eur Respir J, 2020: 1902208. DOI: 10.1183/13993003.02208-2019.
|
[17] |
Farrar D, Simmonds M, Bryant M, et al. Hyperglycaemia and risk of adverse perinatal outcomes: systematic review and Meta-analysis[J]. BMJ, 2016, 354: i4694. DOI: 10.1136/bmj.i4694.
|
[18] |
Hitaka D, Morisaki N, Miyazono Y, et al. Neonatal outcomes of very low birthweight infants born to mothers with hyperglycaemia in pregnancy: a retrospective cohort study in Japan[J]. BMJ Paediatr Open, 2019, 3(1): e000491. DOI: 10.1136/bmjpo-2019-000491.
|
[19] |
Werner EF, Romano ME, Rouse DJ, et al. Association of gestational diabetes mellitus with neonatal respiratory morbidity[J]. Obstet Gynecol, 2019, 133(2): 349-353. DOI: 10.1097/AOG.0000000000003053.
|
[20] |
Fan G, Wang B, Liu C, et al. Prenatal paracetamol use and asthma in childhood: a systematic review and Meta-analysis[J]. Allergol Immunopathol (Madr), 2017, 45(6): 528-533. DOI: 10.1016/j.aller.2016.10.014.
|
[21] |
Magnus MC, Karlstad Ø, Håberg SE, et al. Prenatal and infant paracetamol exposure and development of asthma: the Norwegian Mother and Child Cohort Study[J]. Int J Epidemiol, 2016, 45(2): 512-522. DOI: 10.1093/ije/dyv366.
|
[22] |
Piler P, Švancara J, Kukla L, et al. Role of combined prenatal and postnatal paracetamol exposure on asthma development: the Czech ELSPAC study[J]. J Epidemiol Community Health, 2018, 72(4): 349-355. DOI: 10.1136/jech-2017-209960.
|
[23] |
Liew Z, Ernst A. Intrauterine exposure to acetaminophen and adverse developmental outcomes: epidemiological findings and methodological issues[J]. Curr Environ Health Rep, 2021, 8(1): 23-33. DOI: 10.1007/s40572-020-00301-5.
|
[24] |
Popovic M, Rusconi F, Zugna D, et al. Prenatal exposure to antibiotics and wheezing in infancy: a birth cohort study[J]. Eur Respir J, 2016, 47(3): 810-817. DOI: 10.1183/13993003.00315-2015.
|
[25] |
Momen NC, Liu X. Maternal antibiotic use during pregnancy and asthma in children: population-based cohort study and sibling design[J]. Eur Respir J, 2021, 57(1): 2000937. DOI: 10.1183/13993003.00937-2020.
|
[26] |
Go M, Schilling D, Nguyen T, et al. Respiratory compliance in late preterm infants (34 0/7-34 6/7 weeks) after antenatal steroid therapy[J]. J Pediatr, 2018, 201: 21-26. DOI: 10.1016/j.jpeds.2018.05.037.
|
[27] |
McEvoy C, Schilling D, Spitale P, et al. Pulmonary function and outcomes in infants randomized to a rescue course of antenatal steroids[J]. Pediatr Pulmonol, 2017, 52(9): 1171-1178. DOI: 10.1002/ppul.23711.
|
[28] |
Simpson SJ, Logie KM, O′Dea CA, et al. Altered lung structure and function in mid-childhood survivors of very preterm birth[J]. Thorax, 2017, 72(8): 702-711. DOI: 10.1136/thoraxjnl-2016-208985.
|
[29] |
Turitz AL, Gyamfi-Bannerman C. Comparison of respiratory outcomes between preterm small-for-gestational-age and appropriate-for-gestational-age infants[J]. Am J Perinatol, 2017, 34(3): 283-288. DOI: 10.1055/s-0036-1586755.
|
[30] |
Kuiper-Makris C, Zanetti D, Vohlen C, et al. Mendelian randomization and experimental IUGR reveal the adverse effect of low birth weight on lung structure and function[J]. Sci Rep, 2020, 10(1): 22395. DOI: 10.1038/s41598-020-79245-7.
|
[31] |
Kim YH, Kim KW, Eun HS, et al. Small for gestational age birth may increase airflow limitation in bronchopulmonary dysplasia[J]. Pediatr Pulmonol, 2020, 55(2): 346-353. DOI: 10.1002/ppul.24580.
|
[32] |
Jensen EA, Foglia EE, Dysart KC, et al. Adverse effects of small for gestational age differ by gestational week among very preterm infants[J]. Arch Dis Child Fetal Neonatal Ed, 2019, 104(2): F192-F198. DOI: 10.1136/archdischild-2017-314171.
|
[33] |
Yang J, Kingsford RA, Horwood J, et al. Lung function of adults born at very low birth weight[J]. Pediatrics, 2020, 145(2): e20192359. DOI: 10.1542/peds.2019-2359.
|
[34] |
Charles E, Hunt KA, Harris C, et al. Small for gestational age and extremely low birth weight infant outcomes[J]. J Perinat Med, 2019, 47(2): 247-251. DOI: 10.1515/jpm-2018-0295.
|
[35] |
Thibaut F, Chagraoui A, Buckley L, et al. WFSBP * and IAWMH ** Guidelines for the treatment of alcohol use disorders in pregnant women[J]. World J Biol Psychiatry, 2019, 20(1): 17-50. DOI: 10.1080/15622975.2018.1510185.
|
[36] |
Carson G, Cox LV, Crane J, et al. No. 245-alcohol use and pregnancy consensus clinical guidelines[J]. J Obstet Gynaecol Can, 2017, 39(9): e220-e254. DOI: 10.1016/j.jogc.2017.06.005.
|
[37] |
Sundermann AC, Velez Edwards DR, Slaughter JC, et al. Week-by-week alcohol consumption in early pregnancy and spontaneous abortion risk: a prospective cohort study[J]. Am J Obstet Gynecol, 2021, 224(1): 97.e1-97.e16. DOI: 10.1016/j.ajog.2020.07.012.
|
[38] |
|
[39] |
Gauthier TW, Brown LA. In utero alcohol effects on foetal, neonatal and childhood lung disease[J]. Paediatr Respir Rev, 2017, 21: 34-37. DOI: 10.1016/j.prrv.2016.08.006.
|
[40] |
Gray D, Willemse L, Visagie A, et al. Determinants of early-life lung function in African infants[J]. Thorax, 2017, 72(5): 445-450. DOI: 10.1136/thoraxjnl-2015-207401.
|
[41] |
Muggli E, Matthews H, Penington A, et al. Association between prenatal alcohol exposure and craniofacial shape of children at 12 months of age[J]. JAMA Pediatr, 2017, 171(8): 771-780. DOI: 10.1001/jamapediatrics.2017.0778.
|
[42] |
Balansky R, Ganchev G, Iltcheva M, et al. Interactions between ethanol and cigarette smoke in a mouse lung carcinogenesis model[J]. Toxicology, 2016, 373: 54-62. DOI: 10.1016/j.tox.2016.11.008.
|
[43] |
Pérez-Tarazona S, Rueda Esteban S, García-García ML, et al. Respiratory outcomes of " new" bronchopulmonary dysplasia in adolescents: a multicenter study[J]. Pediatr Pulmonol, 2021, 56(5): 1205-1214. DOI: 10.1002/ppul.25226.
|
[44] |
Lai SH, Chiang MC, Chu SM, et al. Evolution and determinants of lung function until late infancy among infants born preterm[J]. Sci Rep, 2020, 10(1): 490. DOI: 10.1038/s41598-019-57359-x.
|
[45] |
Näsänen-Gilmore P, Sipola-Leppänen M, Tikanmäki M, et al. Lung function in adults born preterm[J]. PLoS One, 2018, 13(10): e0205979. DOI: 10.1371/journal.pone.0205979.
|
[46] |
Vrijlandt EJLE, Reijneveld SA, Aris-Meijer JL, et al. Respiratory health in adolescents born moderately-late preterm in a community-based cohort[J]. J Pediatr, 2018, 203: 429-436. DOI: 10.1016/j.jpeds.2018.07.083.
|
[47] |
Liu L, Pan Y, Zhu Y, et al. Association between rhinovirus wheezing illness and the development of childhood asthma: a Meta-analysis[J]. BMJ Open, 2017, 7(4): e013034. DOI: 10.1136/bmjopen-2016-013034.
|
[48] |
Kitcharoensakkul M, Bacharier LB, Schweiger TL, et al. Lung function trajectories and bronchial hyperresponsiveness during childhood following severe RSV bronchiolitis in infancy[J]. Pediatr Allergy Immunol, 2021, 32(3): 457-464. DOI: 10.1111/pai.13399.
|
[49] |
Scheltema NM, Nibbelke EE, Pouw J, et al. Respiratory syncytial virus prevention and asthma in healthy preterm infants: a randomised controlled trial[J]. Lancet Respir Med, 2018, 6(4): 257-264. DOI: 10.1016/S2213-2600(18)30055-9.
|
[50] |
Drysdale SB, Alcazar M, Wilson T, et al. Functional and genetic predisposition to rhinovirus lower respiratory tract infections in prematurely born infants[J]. Eur J Pediatr, 2016, 175(12): 1943-1949. DOI: 10.1007/s00431-016-2780-0.
|
[51] |
Hasegawa K, Mansbach JM, Bochkov YA, et al. Association of rhinovirus C bronchiolitis and immunoglobulin E sensitization during infancy with development of recurrent wheeze[J]. JAMA Pediatr, 2019, 173(6): 544-552. DOI: 10.1001/jamapediatrics.2019.0384.
|
[52] |
Aldana-Aguirre JC, Pinto M, Featherstone RM, et al. Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: a systematic review and Meta-analysis[J]. Arch Dis Child Fetal Neonatal Ed, 2017, 102(1): F17-F23. DOI: 10.1136/archdischild-2015-310299.
|
[53] |
Simpson SJ, Turkovic L, Wilson AC, et al. Lung function trajectories throughout childhood in survivors of very preterm birth: a longitudinal cohort study[J]. Lancet Child Adolesc Health, 2018, 2(5): 350-359. DOI: 10.1016/S2352-4642(18)30064-6.
|
[54] |
Dylag AM, Kopin HG, O′Reilly MA, et al. Early neonatal oxygen exposure predicts pulmonary morbidity and functional deficits at 1 year[J]. J Pediatr, 2020, 223: 20-28.e2. DOI: 10.1016/j.jpeds.2020.04.042.
|
[55] |
|
[56] |
Sanchez-Solis M, Garcia-Marcos PW, Agüera-Arenas J, et al. Impact of early caffeine therapy in preterm newborns on infant lung function[J]. Pediatr Pulmonol, 2020, 55(1): 102-107. DOI: 10.1002/ppul.24540.
|
[57] |
Doyle LW, Ranganathan S, Cheong J. Neonatal caffeine treatment and respiratory function at 11 years in children under 1,251 g at birth[J]. Am J Respir Crit Care Med, 2017, 196(10): 1318-1324. DOI: 10.1164/rccm.201704-0767OC.
|
[58] |
Harris C, Crichton S, Zivanovic S, et al. Effect of dexamethasone exposure on the neonatal unit on the school age lung function of children born very prematurely[J]. PLoS One, 2018, 13(7): e0200243. DOI: 10.1371/journal.pone.0200243.
|
[59] |
Tukova J, Smisek J, Zlatohlavkova B, et al. Early inhaled budesonide in extremely preterm infants decreases long-term respiratory morbidity[J]. Pediatr Pulmonol, 2020, 55(5): 1124-1130. DOI: 10.1002/ppul.24704.
|