切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2021, Vol. 17 ›› Issue (04) : 373 -379. doi: 10.3877/cma.j.issn.1673-5250.2021.04.001

专题论坛

早产儿生命早期肺发育轨迹研究现状
张海洋, 刘瀚旻()   
  • 收稿日期:2021-03-11 修回日期:2021-07-13 出版日期:2021-08-01
  • 通信作者: 刘瀚旻

Current research status on developmental trajectory of lung in premature infants

Haiyang Zhang, Hanmin Liu()   

  • Received:2021-03-11 Revised:2021-07-13 Published:2021-08-01
  • Corresponding author: Hanmin Liu
  • Supported by:
    Key Research and Development Project of Sichuan Science and Technology Department(2019YFS0037)
引用本文:

张海洋, 刘瀚旻. 早产儿生命早期肺发育轨迹研究现状[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(04): 373-379.

Haiyang Zhang, Hanmin Liu. Current research status on developmental trajectory of lung in premature infants[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(04): 373-379.

人体肺发育成熟沿着固定轨迹进行。生命早期的多种影响因素,均可能导致该轨迹发生改变,从而改变患儿呼吸系统的发育结局。早产儿肺功能检测可以动态、准确、无创、早期、重复评估其呼吸系统状态,了解其生命早期肺功能特点。对早产儿肺发育轨迹特点的研究,有助于更好理解其呼吸系统发育规律及向成年人时期肺功能过渡的特点。笔者拟就早产儿肺发育轨迹模式、早产儿肺发育追赶性生长、早产儿生命早期影响因素对肺发育轨迹的影响及其他相关研究等的最新进展进行阐述。

The development and maturation of human lung follows a fixed trajectory, and a variety of influencing factors in early life may lead to changes in this trajectory, thus changing the developmental outcomes of children′s respiratory system. Lung function test of premature infants can dynamically, accurately, non-invasively, early and repeatedly assess respiratory system status and understand characteristics of lung function in early life. Study on characteristics of premature infants′ lung development trajectory is helpful to better understand their respiratory system development and characteristics of their lung function transition to adult. This paper summarizes the trajectory pattern of premature infants′ lung development, and catch-up growth of premature infants′ lung development, influence factors of early life on trajectory of premature infants′ lung development and maturation, and other related studies.

[1]
Crump C, Sundquist J, Winkleby MA, et al. Gestational age at birth and mortality from infancy into mid-adulthood: a national cohort study[J]. Lancet Child Adolesc Health, 2019, 3(6): 408-417. DOI: 10.1016/S2352-4642(19)30108-7.
[2]
Grant T, Brigham EP, McCormack MC. Childhood origins of adult lung disease as opportunities for prevention[J]. J Allergy Clin Immunol Pract, 2020, 8(3): 849-858. DOI: 10.1016/j.jaip.2020.01.015.
[3]
Gibbons J, Wilson AC, Simpson SJ. Predicting lung health trajectories for survivors of preterm birth[J]. Front Pediatr, 2020, 8: 318. DOI: 10.3389/fped.2020.00318.
[4]
Bui DS, Lodge CJ, Burgess JA, et al. Childhood predictors of lung function trajectories and future COPD risk: a prospective cohort study from the first to the sixth decade of life[J]. Lancet Respir Med, 2018, 6(7): 535-544. DOI: 10.1016/S2213-2600(18)30100-0.
[5]
Levin JC, Sheils CA, Gaffin JM, et al. Lung function trajectories in children with post-prematurity respiratory disease: identifying risk factors for abnormal growth[J]. Respir Res, 2021, 22(1): 143. DOI: 10.1186/s12931-021-01720-0.
[6]
Kaczmarczyk K, Wiszomirska I, Szturmowicz M, et al. Are preterm-born survivors at risk of long-term respiratory disease?[J]. Ther Adv Respir Dis, 2017, 11(7): 277-287. DOI: 10.1177/1753465817710595.
[7]
Doyle LW, Andersson S, Bush A, et al. Expiratory airflow in late adolescence and early adulthood in individuals born very preterm or with very low birthweight compared with controls born at term or with normal birthweight: a Meta-analysis of individual participant data[J]. Lancet Respir Med, 2019, 7(8): 677-686. DOI: 10.1016/S2213-2600(18)30530-7.
[8]
Watterberg KL, Demers LM, Scott SM, et al. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops[J]. Pediatrics, 1996, 97(2): 210-215.
[9]
Sarno L, Della Corte L, Saccone G, et al. Histological chorioamnionitis and risk of pulmonary complications in preterm births: a systematic review and Meta-analysis[J]. J Matern Fetal Neonatal Med, 2019: 1-10. DOI: 10.1080/14767058.2019.1689945.
[10]
Perniciaro S, Casarin J, Nosetti L, et al. Early- and late-respiratory outcome in very low birth weight with or without intrauterine inflammation[J]. Am J Perinatol, 2020, 37(S02): S76-S83. DOI: 10.1055/s-0040-1714257.
[11]
Liu PC, Hung YL, Shen CM, et al. Histological chorioamnionitis and its impact on respiratory outcome in very-low-birth-weight preterm infants[J]. Pediatr Neonatol, 2021, 62(3): 258-264. DOI: 10.1016/j.pedneo.2020.11.009.
[12]
Vardavas CI, Hohmann C, Patelarou E, et al. The independent role of prenatal and postnatal exposure to active and passive smoking on the development of early wheeze in children[J]. Eur Respir J, 2016, 48(1): 115-124. DOI: 10.1183/13993003.01016-2015.
[13]
Hoo AF, Henschen M, Dezateux C, et al. Respiratory function among preterm infants whose mothers smoked during pregnancy[J]. Am J Respir Crit Care Med, 1998, 158(3): 700-705. DOI: 10.1164/ajrccm.158.3.9711057.
[14]
Faber T, Kumar A, Mackenbach JP, et al. Effect of tobacco control policies on perinatal and child health: a systematic review and Meta-analysis[J]. Lancet Public Health, 2017, 2(9): e420-e437. DOI: 10.1016/S2468-2667(17)30144-5.
[15]
McEvoy CT, Shorey-Kendrick LE, Milner K, et al. Oral vitamin C (500 mg/d) to pregnant smokers improves infant airway function at 3 months (VCSIP). A randomized trial[J]. Am J Respir Crit Care Med, 2019, 199(9): 1139-1147. DOI: 10.1164/rccm.201805-1011OC.
[16]
McEvoy CT, Shorey-Kendrick LE, Milner K, et al. Vitamin C to pregnant smokers persistently improves infant airway function to 12 months of age: a randomised trial[J]. Eur Respir J, 2020: 1902208. DOI: 10.1183/13993003.02208-2019.
[17]
Farrar D, Simmonds M, Bryant M, et al. Hyperglycaemia and risk of adverse perinatal outcomes: systematic review and Meta-analysis[J]. BMJ, 2016, 354: i4694. DOI: 10.1136/bmj.i4694.
[18]
Hitaka D, Morisaki N, Miyazono Y, et al. Neonatal outcomes of very low birthweight infants born to mothers with hyperglycaemia in pregnancy: a retrospective cohort study in Japan[J]. BMJ Paediatr Open, 2019, 3(1): e000491. DOI: 10.1136/bmjpo-2019-000491.
[19]
Werner EF, Romano ME, Rouse DJ, et al. Association of gestational diabetes mellitus with neonatal respiratory morbidity[J]. Obstet Gynecol, 2019, 133(2): 349-353. DOI: 10.1097/AOG.0000000000003053.
[20]
Fan G, Wang B, Liu C, et al. Prenatal paracetamol use and asthma in childhood: a systematic review and Meta-analysis[J]. Allergol Immunopathol (Madr), 2017, 45(6): 528-533. DOI: 10.1016/j.aller.2016.10.014.
[21]
Magnus MC, Karlstad Ø, Håberg SE, et al. Prenatal and infant paracetamol exposure and development of asthma: the Norwegian Mother and Child Cohort Study[J]. Int J Epidemiol, 2016, 45(2): 512-522. DOI: 10.1093/ije/dyv366.
[22]
Piler P, Švancara J, Kukla L, et al. Role of combined prenatal and postnatal paracetamol exposure on asthma development: the Czech ELSPAC study[J]. J Epidemiol Community Health, 2018, 72(4): 349-355. DOI: 10.1136/jech-2017-209960.
[23]
Liew Z, Ernst A. Intrauterine exposure to acetaminophen and adverse developmental outcomes: epidemiological findings and methodological issues[J]. Curr Environ Health Rep, 2021, 8(1): 23-33. DOI: 10.1007/s40572-020-00301-5.
[24]
Popovic M, Rusconi F, Zugna D, et al. Prenatal exposure to antibiotics and wheezing in infancy: a birth cohort study[J]. Eur Respir J, 2016, 47(3): 810-817. DOI: 10.1183/13993003.00315-2015.
[25]
Momen NC, Liu X. Maternal antibiotic use during pregnancy and asthma in children: population-based cohort study and sibling design[J]. Eur Respir J, 2021, 57(1): 2000937. DOI: 10.1183/13993003.00937-2020.
[26]
Go M, Schilling D, Nguyen T, et al. Respiratory compliance in late preterm infants (340/7-346/7 weeks) after antenatal steroid therapy[J]. J Pediatr, 2018, 201: 21-26. DOI: 10.1016/j.jpeds.2018.05.037.
[27]
McEvoy C, Schilling D, Spitale P, et al. Pulmonary function and outcomes in infants randomized to a rescue course of antenatal steroids[J]. Pediatr Pulmonol, 2017, 52(9): 1171-1178. DOI: 10.1002/ppul.23711.
[28]
Simpson SJ, Logie KM, O′Dea CA, et al. Altered lung structure and function in mid-childhood survivors of very preterm birth[J]. Thorax, 2017, 72(8): 702-711. DOI: 10.1136/thoraxjnl-2016-208985.
[29]
Turitz AL, Gyamfi-Bannerman C. Comparison of respiratory outcomes between preterm small-for-gestational-age and appropriate-for-gestational-age infants[J]. Am J Perinatol, 2017, 34(3): 283-288. DOI: 10.1055/s-0036-1586755.
[30]
Kuiper-Makris C, Zanetti D, Vohlen C, et al. Mendelian randomization and experimental IUGR reveal the adverse effect of low birth weight on lung structure and function[J]. Sci Rep, 2020, 10(1): 22395. DOI: 10.1038/s41598-020-79245-7.
[31]
Kim YH, Kim KW, Eun HS, et al. Small for gestational age birth may increase airflow limitation in bronchopulmonary dysplasia[J]. Pediatr Pulmonol, 2020, 55(2): 346-353. DOI: 10.1002/ppul.24580.
[32]
Jensen EA, Foglia EE, Dysart KC, et al. Adverse effects of small for gestational age differ by gestational week among very preterm infants[J]. Arch Dis Child Fetal Neonatal Ed, 2019, 104(2): F192-F198. DOI: 10.1136/archdischild-2017-314171.
[33]
Yang J, Kingsford RA, Horwood J, et al. Lung function of adults born at very low birth weight[J]. Pediatrics, 2020, 145(2): e20192359. DOI: 10.1542/peds.2019-2359.
[34]
Charles E, Hunt KA, Harris C, et al. Small for gestational age and extremely low birth weight infant outcomes[J]. J Perinat Med, 2019, 47(2): 247-251. DOI: 10.1515/jpm-2018-0295.
[35]
Thibaut F, Chagraoui A, Buckley L, et al. WFSBP * and IAWMH ** Guidelines for the treatment of alcohol use disorders in pregnant women[J]. World J Biol Psychiatry, 2019, 20(1): 17-50. DOI: 10.1080/15622975.2018.1510185.
[36]
Carson G, Cox LV, Crane J, et al. No. 245-alcohol use and pregnancy consensus clinical guidelines[J]. J Obstet Gynaecol Can, 2017, 39(9): e220-e254. DOI: 10.1016/j.jogc.2017.06.005.
[37]
Sundermann AC, Velez Edwards DR, Slaughter JC, et al. Week-by-week alcohol consumption in early pregnancy and spontaneous abortion risk: a prospective cohort study[J]. Am J Obstet Gynecol, 2021, 224(1): 97.e1-97.e16. DOI: 10.1016/j.ajog.2020.07.012.
[38]
汪正园,宋峻,黄翠花,等. 上海市614名孕妇饮酒行为及其对子女饮酒期望的研究[J]. 中国健康教育2016, 32(4): 341-343, 348. DOI: 10.16168/j.cnki.issn.1002-9982.2016.04.012.
[39]
Gauthier TW, Brown LA. In utero alcohol effects on foetal, neonatal and childhood lung disease[J]. Paediatr Respir Rev, 2017, 21: 34-37. DOI: 10.1016/j.prrv.2016.08.006.
[40]
Gray D, Willemse L, Visagie A, et al. Determinants of early-life lung function in African infants[J]. Thorax, 2017, 72(5): 445-450. DOI: 10.1136/thoraxjnl-2015-207401.
[41]
Muggli E, Matthews H, Penington A, et al. Association between prenatal alcohol exposure and craniofacial shape of children at 12 months of age[J]. JAMA Pediatr, 2017, 171(8): 771-780. DOI: 10.1001/jamapediatrics.2017.0778.
[42]
Balansky R, Ganchev G, Iltcheva M, et al. Interactions between ethanol and cigarette smoke in a mouse lung carcinogenesis model[J]. Toxicology, 2016, 373: 54-62. DOI: 10.1016/j.tox.2016.11.008.
[43]
Pérez-Tarazona S, Rueda Esteban S, García-García ML, et al. Respiratory outcomes of " new" bronchopulmonary dysplasia in adolescents: a multicenter study[J]. Pediatr Pulmonol, 2021, 56(5): 1205-1214. DOI: 10.1002/ppul.25226.
[44]
Lai SH, Chiang MC, Chu SM, et al. Evolution and determinants of lung function until late infancy among infants born preterm[J]. Sci Rep, 2020, 10(1): 490. DOI: 10.1038/s41598-019-57359-x.
[45]
Näsänen-Gilmore P, Sipola-Leppänen M, Tikanmäki M, et al. Lung function in adults born preterm[J]. PLoS One, 2018, 13(10): e0205979. DOI: 10.1371/journal.pone.0205979.
[46]
Vrijlandt EJLE, Reijneveld SA, Aris-Meijer JL, et al. Respiratory health in adolescents born moderately-late preterm in a community-based cohort[J]. J Pediatr, 2018, 203: 429-436. DOI: 10.1016/j.jpeds.2018.07.083.
[47]
Liu L, Pan Y, Zhu Y, et al. Association between rhinovirus wheezing illness and the development of childhood asthma: a Meta-analysis[J]. BMJ Open, 2017, 7(4): e013034. DOI: 10.1136/bmjopen-2016-013034.
[48]
Kitcharoensakkul M, Bacharier LB, Schweiger TL, et al. Lung function trajectories and bronchial hyperresponsiveness during childhood following severe RSV bronchiolitis in infancy[J]. Pediatr Allergy Immunol, 2021, 32(3): 457-464. DOI: 10.1111/pai.13399.
[49]
Scheltema NM, Nibbelke EE, Pouw J, et al. Respiratory syncytial virus prevention and asthma in healthy preterm infants: a randomised controlled trial[J]. Lancet Respir Med, 2018, 6(4): 257-264. DOI: 10.1016/S2213-2600(18)30055-9.
[50]
Drysdale SB, Alcazar M, Wilson T, et al. Functional and genetic predisposition to rhinovirus lower respiratory tract infections in prematurely born infants[J]. Eur J Pediatr, 2016, 175(12): 1943-1949. DOI: 10.1007/s00431-016-2780-0.
[51]
Hasegawa K, Mansbach JM, Bochkov YA, et al. Association of rhinovirus C bronchiolitis and immunoglobulin E sensitization during infancy with development of recurrent wheeze[J]. JAMA Pediatr, 2019, 173(6): 544-552. DOI: 10.1001/jamapediatrics.2019.0384.
[52]
Aldana-Aguirre JC, Pinto M, Featherstone RM, et al. Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: a systematic review and Meta-analysis[J]. Arch Dis Child Fetal Neonatal Ed, 2017, 102(1): F17-F23. DOI: 10.1136/archdischild-2015-310299.
[53]
Simpson SJ, Turkovic L, Wilson AC, et al. Lung function trajectories throughout childhood in survivors of very preterm birth: a longitudinal cohort study[J]. Lancet Child Adolesc Health, 2018, 2(5): 350-359. DOI: 10.1016/S2352-4642(18)30064-6.
[54]
Dylag AM, Kopin HG, O′Reilly MA, et al. Early neonatal oxygen exposure predicts pulmonary morbidity and functional deficits at 1 year[J]. J Pediatr, 2020, 223: 20-28.e2. DOI: 10.1016/j.jpeds.2020.04.042.
[55]
于梅,黄金华,朱蓉,等. 枸橼酸咖啡因治疗对呼吸暂停早产儿早期肺功能的影响[J]. 中国当代儿科杂志2016, 18(3): 206-210. DOI: 10.7499/j.issn.1008-8830.2016.03.003.
[56]
Sanchez-Solis M, Garcia-Marcos PW, Agüera-Arenas J, et al. Impact of early caffeine therapy in preterm newborns on infant lung function[J]. Pediatr Pulmonol, 2020, 55(1): 102-107. DOI: 10.1002/ppul.24540.
[57]
Doyle LW, Ranganathan S, Cheong J. Neonatal caffeine treatment and respiratory function at 11 years in children under 1,251 g at birth[J]. Am J Respir Crit Care Med, 2017, 196(10): 1318-1324. DOI: 10.1164/rccm.201704-0767OC.
[58]
Harris C, Crichton S, Zivanovic S, et al. Effect of dexamethasone exposure on the neonatal unit on the school age lung function of children born very prematurely[J]. PLoS One, 2018, 13(7): e0200243. DOI: 10.1371/journal.pone.0200243.
[59]
Tukova J, Smisek J, Zlatohlavkova B, et al. Early inhaled budesonide in extremely preterm infants decreases long-term respiratory morbidity[J]. Pediatr Pulmonol, 2020, 55(5): 1124-1130. DOI: 10.1002/ppul.24704.
[1] 胡诤贇, 史建伟, 申建伟, 王冰, 蒋春苗, 刘冲. 基于机器学习鉴定早产儿支气管肺发育不良的关键基因[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 446-454.
[2] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[3] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[4] 徐丽玲, 卢玉宝, 赵彦, 任利, 李姝艺, 符娟, 康玲, 汪青松, 尤再春. COPD管理云平台的构建及临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 481-484.
[5] 李海明, 刘鸿飞, 李俊. 血清脂蛋白酶水平与COPD患者骨骼肌质量减少的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 500-503.
[6] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[7] 周杉京, 诸葛金科, 王芳芳. 补肺活血胶囊对COPD患者cCor、ALD、Ang-Ⅱ的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 517-519.
[8] 吴庆华, 冒勇, 闫效坤. AECOPD并发AKI的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 529-531.
[9] 芦丹, 杨硕, 刘旭. VEGF、HMGB1、hs-CRP/Alb在AECOPD伴呼吸衰竭中的变化及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 532-534.
[10] 熊锋, 娄建丽. 慢性阻塞性肺疾病急性加重期预后的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 550-553.
[11] 王庆, 张红联, 吴志勇. COPD合并多重耐药菌肺部感染预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 557-559.
[12] 林静, 陈芳, 刘小霞. COPD患者认知功能障碍影响因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 569-571.
[13] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[14] 张七妹, 麦宜准, 蒋浩波. 喘可治对慢性阻塞性肺疾病缓解期的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 578-580.
[15] 张林, 刘芳, 赵静, 刘勇, 周青. 远程康复在慢性阻塞性肺疾病患者肺康复中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 601-604.
阅读次数
全文


摘要