切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2020, Vol. 16 ›› Issue (05) : 551 -557. doi: 10.3877/cma.j.issn.1673-5250.2020.05.008

所属专题: 文献

论著

基于GEO数据库的不明原因复发性自然流产患者子宫内膜差异基因筛选及其生物信息学分析
陈恒禧1, 成姝婷2, 肖丽1, 黄薇1,()   
  1. 1. 四川大学华西第二医院妇产科、出生缺陷与相关妇儿疾病教育部重点实验,成都 610041
    2. 四川大学基础医学与法医学院,成都 610041
  • 收稿日期:2019-10-01 修回日期:2020-08-01 出版日期:2020-10-01
  • 通信作者: 黄薇

Screening and bioinformatics analysis of differentially expressed genes in unexplained recurrent spontaneous abortion based on the GEO database

Hengxi Chen1, Shuting Cheng2, Li Xiao1, Wei Huang1,()   

  1. 1. Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
    2. West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2019-10-01 Revised:2020-08-01 Published:2020-10-01
  • Corresponding author: Wei Huang
  • Supported by:
    Key Research and Development Program of Science and Technology Department of Sichuan Province(2019YFS0421)
引用本文:

陈恒禧, 成姝婷, 肖丽, 黄薇. 基于GEO数据库的不明原因复发性自然流产患者子宫内膜差异基因筛选及其生物信息学分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2020, 16(05): 551-557.

Hengxi Chen, Shuting Cheng, Li Xiao, Wei Huang. Screening and bioinformatics analysis of differentially expressed genes in unexplained recurrent spontaneous abortion based on the GEO database[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2020, 16(05): 551-557.

目的

探讨不明原因复发性自然流产(URSA)患者子宫内膜差异基因筛选及其相关信号通路及生物学过程。

方法

在基因表达总览(GEO)数据库中,以"recurrent spontaneous abortion""recurrent pregnancy loss""endometrium""homo sapiens"为关键词,检索URSA患者子宫内膜基因芯片数据集。利用R语言对URSA患者子宫内膜基因芯片数据进行分析,筛选差异基因,并对不同芯片数据集间差异基因取交集,获得共同差异基因。利用David数据库对共同差异基因的基因本体(GO)及京都基因与基因组百科全书(KEGG)信号通路进行富集分析。利用STRING数据库对这些基因数据集的差异基因编码蛋白的蛋白质与蛋白质相互作用(PPI)网络进行构建,并采用Cytoscape软件(v3.0)进行可视化。

结果

①本研究获得GSE26787和GSE65099共计2个URSA患者子宫内膜基因数据集,对这2个数据集差异基因取交集,最终获得23个共差异基因,其中上调基因为19个,分别为ADM2、SH3D21、FGFR4、SULT2B1、NRG2、SERPINA4、NLRP5、FAM124B、MCOLN3、SLC7A1、PPP1R1B、SQLE、SLC24A4、PLPPR5、EPHB3、SMIM24、ZNF589、SOX7、EDN3;下调基因为4个,分别为PRKCB、ANG、IRX5、ATG9B。②共同差异基因GO富集分析获得BP、CC和MF共计3个部分结果。共同差异基因在BP中,主要涉及细胞Ca2+稳态、血管生成及细胞内信号传导;在CC中,主要涉及膜的整体组分;在MF中,主要涉及受体结合。③KEGG通路富集分析结果显示,共同差异基因富集于ErbB信号通路(P=0.070,FDR=55.245)。涉及该信号通路的共同差异基因为NRG2和PRKCB

结论

基于GEO数据库,采用生物信息学的方法筛选到参与URSA发生、发展的部分差异基因,并为进一步研究提供数据支撑。

Objective

To screen the differentially expressed genes in endometrial of patients diagnosed with unexplained recurrent spontaneous abortion (URSA) and explore the related pathways and biological processes.

Methods

This study was searched using " recurrent sporadic abortion" , " recurrent probability loss" , " endometrium" and " homo sapiens" as the search key words. The R language was used to analyze the microarray data, screen the differential genes, and intersect the differential genes between the datasets to obtain co-differentially expressed genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways of co-differentially expressed genes were enriched using the David database. The protein-protein interaction (PPI) network of co-differentially expressed genes encoding proteins in the data set was constructed by using STRING database, and visualized by using Cytoscape software (v3.0).

Results

①Two data sets, GSE26787 and GSE65099, were obtained in this study. Then, the difference genes of the two data sets were intersected, and finally 23 co-differentially expressed genes were screened. Among these 23 co-differentially expressed genes, there were 19 up-regulated genes (ADM2, SH3D21, FGFR4, SULT2B1, NRG2, SERPINA4, NLRP5, FAM124B, MCOLN3, SLC7A1, PPP1R1B, SQLE, SLC24A4, PLPPR5, EPHB3, SMIM24, ZNF589, SOX7, EDN3) and 4 down-regulated genes (PRKCB, ANG, IRX5, ATG9B). ②The Go enrichment analysis of co-differentially expressed genes obtained 3 parts including BP, CC and MF. Co-differential expressed genes of BP were mainly related to cellular calcium ion homeostasis, angiogenesis, and intracellular signal transduction. CC mainly involved the whole composition of the membrane; MF mainly involved receptor binding. ③KEGG pathway enrichment analysis showed that co-differentially expressed genes were enriched in ErbB signaling pathway (P=0.070, FDR=55.245). Co-differentially expressed genes involved in ErbB signaling pathway were NRG2 and PRKCB.

Conclusions

Some differentially expressed genes can be effectively screened by bioinformatics analysis, and it can provide the basis for further research.

图1 GSE26787数据集差异表达基因热图
图2 GSE65099数据集差异表达基因热图
表1 GO富集分析共同差异基因
图3 GSE26787和GSE65099数据集差异基因PPI网络图
[1]
Rai R, Regan L. Recurrent miscarriage[J]. Lancet, 2006, 368(9535): 601-611. DOI: 10.1016/S0140-6736(06)69204-0.
[2]
Branch DW, Gibson M, Silver RM. Clinical practice. Recurrent miscarriage[J]. N Engl J Med, 2010, 363(18): 1740-1747. DOI: 10.1056/NEJMcp1005330.
[3]
Jia N, Li J. Noncoding RNAs in unexplained recurrent spontaneous abortions and their diagnostic potential[J]. Dis Markers, 2019, 2019: 7090767. DOI: 10.1155/2019/7090767.
[4]
马韵,郑梅玲. 不明原因复发性流产发病机制研究进展[J/CD]. 中华妇幼临床医学杂志(电子版),2016,12(2): 237-240. DOI: 10.3877/cma.j.issn.1673-5250.2016.02.020.
[5]
Guo W, Zhu X, Yan L, et al. The present and future of whole-exome sequencing in studying and treating human reproductive disorders[J]. J Genet Genomics, 2018, 45(10): 517-525. DOI: 10.1016/j.jgg.2018.08.004.
[6]
符梅,徐克惠. 复发性自然流产夫妇的病因分析[J/CD]. 中华妇幼临床医学杂志(电子版),2016,12(4): 395-400. DOI: 10.3877/cma.j.issn.1673-5250.2016.04.005.
[7]
Bassil R, Casper R, Samara N, et al. Does the endometrial receptivity array really provide personalized embryo transfer?[J]. J Assist Reprod Genet, 2018, 35(7): 1301-1305. DOI: 10.1007/s10815-018-1190-9.
[8]
Tan J, Kan A, Hitkari J, et al. The role of the endometrial receptivity array (ERA) in patients who have failed euploid embryo transfers[J]. J Assist Reprod Genet, 2018, 35(4): 683-692. DOI: 10.1007/s10815-017-1112-2.
[9]
Lin Z, Lin Y. Identification of potential crucial genes associated with steroid-induced necrosis of femoral head based on gene expression profile[J]. Gene, 2017, 627: 322-326. DOI: 10.1016/j.gene.2017.05.026.
[10]
Chen H, Cheng S, Liu C, et al. Bioinformatics analysis of differentially expressed genes, methylated genes, and miRNAs in unexplained recurrent spontaneous abortion[J]. J Comput Biol, 2019, 26(12): 1418-1426. DOI: 10.1089/cmb.2019.0158.
[11]
Bashiri A, Halper KI, Orvieto R. Recurrent implantation failure-update overview on etiology, diagnosis, treatment and future directions[J]. Reprod Biol Endocrinol, 2018, 16(1): 121. DOI: 10.1186/s12958-018-0414-2.
[12]
Kitaya K, Nagai Y, Arai W, et al. Characterization of microbiota in endometrial fluid and vaginal secretions in infertile women with repeated implantation failure[J]. Mediators Inflamm, 2019, 2019: 4893437. DOI: 10.1155/2019/4893437.eCollection2019.
[13]
Kliman HJ, Frankfurter D. Clinical approach to recurrent implantation failure: evidence-based evaluation of the endometrium[J]. Fertil Steril, 2019, 111(4): 618-628. DOI: 10.1016/j.fertnstert.2019.02.011.
[14]
Pérez-Debén S, Bellver J, Alamá P, et al. iTRAQ comparison of proteomic profiles of endometrial receptivity[J]. J Proteomics, 2019, 203: 103381. DOI: 10.1016/j.jprot.2019.103381.
[15]
Suhorutshenko M, Kukushkina V, Velthut-Meikas A, et al. Endometrial receptivity revisited: endometrial transcriptome adjusted for tissue cellular heterogeneity[J]. Hum Reprod, 2018, 33(11): 2074-2086. DOI: 10.1093/humrep/dey301.
[16]
Enciso M, Carrascosa JP, Sarasa J, et al. Development of a new comprehensive and reliable endometrial receptivity map (ER Map/ER Grade) based on RT-qPCR gene expression analysis[J]. Hum Reprod, 2018, 33(2): 220-228. DOI: 10.1093/humrep/dex370.
[17]
Wu M, Shang X, Sun Y, et al. Integrated analysis of lymphocyte infiltration-associated lncRNA for ovarian cancer via TCGA, GTEx and GEO datasets[J]. PeerJ, 2020, 8: e8961. DOI: 10.7717/peerj.8961.
[18]
Quintanal-Villalonga A, Ferrer I, Molina-Pinelo S, et al. A patent review of FGFR4 selective inhibition in cancer (2007-2018)[J]. Expert Opin Ther Pat, 2019, 29(6): 429-438. DOI: 10.1080/13543776.2019.1624720.
[19]
Elkrief L, Ferrusquia-Acosta J, Payancé A, et al. Abdominal surgery in patients with idiopathic noncirrhotic portal hypertension: a multicenter retrospective study[J]. Hepatology, 2019, 70(3): 911-924. DOI: 10.1002/hep.30628.
[20]
Jomrich G, Hudec X, Harpain F, et al. Expression of FGF8, FGF18, and FGFR4 in gastroesophageal adenocarcinomas[J]. Cells, 2019, 8(9): 1092. DOI: 10.3390/cells8091092.
[21]
Levine KM, Priedigkeit N, Basudan A, et al. FGFR4 overexpression and hotspot mutations in metastatic ER breast cancer are enriched in the lobular subtype[J]. NPJ Breast Cancer, 2019, 5: 19. DOI: 10.1038/s41523-019-0114-x.
[22]
Okumu LA, Forde N, Mamo S, et al. Temporal regulation of fibroblast growth factors and their receptors in the endometrium and conceptus during the pre-implantation period of pregnancy in cattle[J]. Reproduction, 2014, 147(6): 825-834. DOI: 10.1530/REP-13-0373.
[23]
Santos R, Oudit GY, Verano-Braga T, et al. The renin-angiotensin system: going beyond the classical paradigms[J]. Am J Physiol Heart Circ Physiol, 2019, 316(5): H958-H970. DOI: 10.1152/ajpheart.00723.2018.
[24]
Lash GE, Innes BA, Drury JA, et al. Localization of angiogenic growth factors and their receptors in the human endometrium throughout the menstrual cycle and in recurrent miscarriage[J]. Hum Reprod, 2012, 27(1): 183-195. DOI: 10.1093/humrep/der376.
[25]
Robson A, Harris LK, Innes BA, et al. Uterine natural killer cells initiate spiral artery remodeling in human pregnancy[J]. FASEB J, 2012, 26(12): 4876-4885. DOI: 10.1096/fj.12-210310.
[26]
Zhang SY, Xu MJ, Wang X. Adrenomedullin 2/intermedin: a putative drug candidate for treatment of cardiometabolic diseases[J]. Br J Pharmacol, 2018, 175(8): 1230-1240. DOI: 10.1111/bph.13814.
[27]
Chauhan M, Balakrishnan M, Chan R, et al. Adrenomedullin 2 (ADM2) regulates Mucin 1 at the maternal-fetal interface in human pregnancy[J]. Biol Reprod, 2015, 93(6): 136. DOI: 10.1095/biolreprod.115.134296.
[28]
Chauhan M, Balakrishnan M, Vidaeff A, et al. Adrenomedullin2 (ADM2)/Intermedin (IMD): a potential role in the pathophysiology of preeclampsia[J]. J Clin Endocrinol Metab, 2016, 101(11): 4478-4488. DOI: 10.1210/jc.2016-1333.
[29]
Chauhan M, Betancourt A, Balakrishnan M, et al. Impaired vasodilatory responses of omental arteries to CGRP family peptides in pregnancies complicated by fetal growth restriction[J]. J Clin Endocrinol Metab, 2016, 101(8): 2984-2993. DOI: 10.1210/jc.2016-1798.
[30]
Heinz L, Kim GJ, Marrakchi S, et al. Mutations in SULT2B1 cause autosomal-recessive congenital ichthyosis in humans[J]. Am J Hum Genet, 2017, 100(6): 926-939. DOI: 10.1016/j.ajhg.2017.05.007
[31]
Falany CN, Rohn-Glowacki KJ. SULT2B1: unique properties and characteristics of a hydroxysteroid sulfotransferase family[J]. Drug Metab Rev, 2013, 45(4): 388-400. DOI: 10.3109/03602532.2013.835609.
[32]
Aminkeng F, Ross CJ, Rassekh SR, et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity[J]. Br J Clin Pharmacol, 2016, 82(3): 683-695. DOI: 10.1111/bcp.13008.
[33]
Hevir N, Ribič-Pucelj M, Lanišnik Rižner T. Disturbed balance between phase Ⅰ and Ⅱ metabolizing enzymes in ovarian endometriosis: a source of excessive hydroxy-estrogens and ROS?[J]. Mol Cell Endocrinol, 2013, 367(1-2): 74-84. DOI: 10.1016/j.mce.2012.12.019.
[34]
Tingting C, Shizhou Y, Songfa Z, et al. Human papillomavirus 16E6/E7 activates autophagy via Atg9B and LAMP1 in cervical cancer cells[J]. Cancer Med, 2019, 8(9): 4404-4416. DOI: 10.1002/cam4.2351.
[35]
Ma Z, Qi Z, Shan Z, et al. The role of CRP and ATG9B expression in clear cell renal cell carcinoma[J]. Biosci Rep, 2017, 37(6): BSR20171082. DOI: 10.1042/BSR20171082.
[36]
Wang N, Tan HY, Li S, et al. Atg9b deficiency suppresses autophagy and potentiates endoplasmic reticulum stress-associated hepatocyte apoptosis in hepatocarcinogenesis[J]. Theranostics, 2017, 7(8): 2325-2338. DOI: 10.7150/thno.18225.
[37]
Zhang X, Li C, Wang D, et al. Aberrant methylation of ATG2B, ATG4D, ATG9A and ATG9B CpG island promoter is associated with decreased mRNA expression in sporadic breast carcinoma[J]. Gene, 2016, 590(2): 285-292. DOI: 10.1016/j.gene.2016.05.036.
[38]
Kataria H, Alizadeh A, Karimi-Abdolrezaee S. Neuregulin-1/ErbB network: an emerging modulator of nervous system injury and repair[J]. Prog Neurobiol, 2019, 180: 101643. DOI: 10.1016/j.pneurobio.2019.101643.
[40]
Geethadevi A, Parashar D, Bishop E, et al. ERBB signaling in CTCs of ovarian cancer and glioblastoma[J]. Genes Cancer, 2017, 8(11-12): 746-751. DOI: 10.18632/genesandcancer.162.
[41]
Sanchez-Soria P, Camenisch TD. ErbB signaling in cardiac development and disease[J]. Semin Cell Dev Biol, 2010, 21(9): 929-35. DOI: 10.1016/j.semcdb.2010.09.011.
[1] 李蓉. 薄型子宫内膜治疗新方法[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 591-591.
[2] 李小飞, 刘洪莉, 石丘玲, 田静, 李莉, 漆洪波, 罗欣. 自然分娩产妇低强度聚焦超声子宫复旧治疗防治产后出血的前瞻性随机对照研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 534-539.
[3] 唐丹, 姚晓曦, 杨博文, 薛绍龙, 李梦瑶, 韦柳杏, 郄明蓉. 双肾上腺皮质激素样激酶1对子宫内膜样腺癌患者临床特征的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 582-590.
[4] 王敏, 周玲. 复发性流产的遗传因素病因学研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 374-381.
[5] 张少华, 林爱齐, 张玉, 董晓云, 刘红英. HLAIL基因多态性及其与复发性自然流产的相关性[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 251-259.
[6] 王振宁, 杨康, 王得晨, 邹敏, 归明彬, 王雅楠, 徐明. 机器人与腹腔镜手术联合经自然腔道取标本对中低位直肠癌患者远期疗效比较[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 437-442.
[7] 胡启明, 鄢潇, 尤志学, 黄骁昊. 经瘢痕处单孔腹腔镜下切除多病灶腹壁子宫内膜异位症[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 314-317.
[8] 张蕾, 彭超, 周应芳. 直肠阴道隔子宫内膜异位症腹腔镜手术技巧[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 257-261.
[9] 王庭宇, 邵联波, 刘珊, 沈振亚. Stanford A 型主动脉夹层相关基因KIF20A 的共表达网络构建及作用靶点分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 303-312.
[10] 黄海洋, 邝永龙, 陈嘉胜. 基层医院结直肠肿瘤经自然腔道取标本手术30 例分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 510-518.
[11] 芦煜, 李振宇, 吴承东, 周仲伍. 肛周子宫内膜异位症一例报告[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 431-434.
[12] 孙鹏, 陈瑛罡. 腹部无辅助切口经肛门取标本的腹腔镜下直肠癌根治术一例(附视频)[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 347-352.
[13] 李月刚, 关旭, 赵志勋, 权继传, 庄孟, 汤坚强. 结直肠癌NOSES手术的国际研究现状[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 321-328.
[14] 朱志, 张鑫炜, 谭文斐, 高梓茗, 赵睿涵, 杨野, 王世洋, 智冬梅, 赵鑫, 尹长欣, 高畅远, 王锡山, 王振宁, 李凯, 周海涛. 直肠癌经自然腔道取标本手术在日间手术中的应用[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 329-334.
[15] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
阅读次数
全文


摘要