[1] |
|
[2] |
Branch DW, Gibson M, Silver RM. Clinical practice. Recurrent miscarriage[J]. N Engl J Med, 2010, 363(18): 1740-1747. DOI: 10.1056/NEJMcp1005330.
|
[3] |
Jia N, Li J. Noncoding RNAs in unexplained recurrent spontaneous abortions and their diagnostic potential[J]. Dis Markers, 2019, 2019: 7090767. DOI: 10.1155/2019/7090767.
|
[4] |
|
[5] |
Guo W, Zhu X, Yan L, et al. The present and future of whole-exome sequencing in studying and treating human reproductive disorders[J]. J Genet Genomics, 2018, 45(10): 517-525. DOI: 10.1016/j.jgg.2018.08.004.
|
[6] |
|
[7] |
Bassil R, Casper R, Samara N, et al. Does the endometrial receptivity array really provide personalized embryo transfer?[J]. J Assist Reprod Genet, 2018, 35(7): 1301-1305. DOI: 10.1007/s10815-018-1190-9.
|
[8] |
Tan J, Kan A, Hitkari J, et al. The role of the endometrial receptivity array (ERA) in patients who have failed euploid embryo transfers[J]. J Assist Reprod Genet, 2018, 35(4): 683-692. DOI: 10.1007/s10815-017-1112-2.
|
[9] |
Lin Z, Lin Y. Identification of potential crucial genes associated with steroid-induced necrosis of femoral head based on gene expression profile[J]. Gene, 2017, 627: 322-326. DOI: 10.1016/j.gene.2017.05.026.
|
[10] |
Chen H, Cheng S, Liu C, et al. Bioinformatics analysis of differentially expressed genes, methylated genes, and miRNAs in unexplained recurrent spontaneous abortion[J]. J Comput Biol, 2019, 26(12): 1418-1426. DOI: 10.1089/cmb.2019.0158.
|
[11] |
Bashiri A, Halper KI, Orvieto R. Recurrent implantation failure-update overview on etiology, diagnosis, treatment and future directions[J]. Reprod Biol Endocrinol, 2018, 16(1): 121. DOI: 10.1186/s12958-018-0414-2.
|
[12] |
Kitaya K, Nagai Y, Arai W, et al. Characterization of microbiota in endometrial fluid and vaginal secretions in infertile women with repeated implantation failure[J]. Mediators Inflamm, 2019, 2019: 4893437. DOI: 10.1155/2019/4893437.eCollection2019.
|
[13] |
Kliman HJ, Frankfurter D. Clinical approach to recurrent implantation failure: evidence-based evaluation of the endometrium[J]. Fertil Steril, 2019, 111(4): 618-628. DOI: 10.1016/j.fertnstert.2019.02.011.
|
[14] |
Pérez-Debén S, Bellver J, Alamá P, et al. iTRAQ comparison of proteomic profiles of endometrial receptivity[J]. J Proteomics, 2019, 203: 103381. DOI: 10.1016/j.jprot.2019.103381.
|
[15] |
Suhorutshenko M, Kukushkina V, Velthut-Meikas A, et al. Endometrial receptivity revisited: endometrial transcriptome adjusted for tissue cellular heterogeneity[J]. Hum Reprod, 2018, 33(11): 2074-2086. DOI: 10.1093/humrep/dey301.
|
[16] |
Enciso M, Carrascosa JP, Sarasa J, et al. Development of a new comprehensive and reliable endometrial receptivity map (ER Map/ER Grade) based on RT-qPCR gene expression analysis[J]. Hum Reprod, 2018, 33(2): 220-228. DOI: 10.1093/humrep/dex370.
|
[17] |
Wu M, Shang X, Sun Y, et al. Integrated analysis of lymphocyte infiltration-associated lncRNA for ovarian cancer via TCGA, GTEx and GEO datasets[J]. PeerJ, 2020, 8: e8961. DOI: 10.7717/peerj.8961.
|
[18] |
Quintanal-Villalonga A, Ferrer I, Molina-Pinelo S, et al. A patent review of FGFR4 selective inhibition in cancer (2007-2018)[J]. Expert Opin Ther Pat, 2019, 29(6): 429-438. DOI: 10.1080/13543776.2019.1624720.
|
[19] |
Elkrief L, Ferrusquia-Acosta J, Payancé A, et al. Abdominal surgery in patients with idiopathic noncirrhotic portal hypertension: a multicenter retrospective study[J]. Hepatology, 2019, 70(3): 911-924. DOI: 10.1002/hep.30628.
|
[20] |
Jomrich G, Hudec X, Harpain F, et al. Expression of FGF8, FGF18, and FGFR4 in gastroesophageal adenocarcinomas[J]. Cells, 2019, 8(9): 1092. DOI: 10.3390/cells8091092.
|
[21] |
Levine KM, Priedigkeit N, Basudan A, et al. FGFR4 overexpression and hotspot mutations in metastatic ER + breast cancer are enriched in the lobular subtype[J]. NPJ Breast Cancer, 2019, 5: 19. DOI: 10.1038/s41523-019-0114-x.
|
[22] |
Okumu LA, Forde N, Mamo S, et al. Temporal regulation of fibroblast growth factors and their receptors in the endometrium and conceptus during the pre-implantation period of pregnancy in cattle[J]. Reproduction, 2014, 147(6): 825-834. DOI: 10.1530/REP-13-0373.
|
[23] |
Santos R, Oudit GY, Verano-Braga T, et al. The renin-angiotensin system: going beyond the classical paradigms[J]. Am J Physiol Heart Circ Physiol, 2019, 316(5): H958-H970. DOI: 10.1152/ajpheart.00723.2018.
|
[24] |
Lash GE, Innes BA, Drury JA, et al. Localization of angiogenic growth factors and their receptors in the human endometrium throughout the menstrual cycle and in recurrent miscarriage[J]. Hum Reprod, 2012, 27(1): 183-195. DOI: 10.1093/humrep/der376.
|
[25] |
Robson A, Harris LK, Innes BA, et al. Uterine natural killer cells initiate spiral artery remodeling in human pregnancy[J]. FASEB J, 2012, 26(12): 4876-4885. DOI: 10.1096/fj.12-210310.
|
[26] |
Zhang SY, Xu MJ, Wang X. Adrenomedullin 2/intermedin: a putative drug candidate for treatment of cardiometabolic diseases[J]. Br J Pharmacol, 2018, 175(8): 1230-1240. DOI: 10.1111/bph.13814.
|
[27] |
Chauhan M, Balakrishnan M, Chan R, et al. Adrenomedullin 2 (ADM2) regulates Mucin 1 at the maternal-fetal interface in human pregnancy[J]. Biol Reprod, 2015, 93(6): 136. DOI: 10.1095/biolreprod.115.134296.
|
[28] |
Chauhan M, Balakrishnan M, Vidaeff A, et al. Adrenomedullin2 (ADM2)/Intermedin (IMD): a potential role in the pathophysiology of preeclampsia[J]. J Clin Endocrinol Metab, 2016, 101(11): 4478-4488. DOI: 10.1210/jc.2016-1333.
|
[29] |
Chauhan M, Betancourt A, Balakrishnan M, et al. Impaired vasodilatory responses of omental arteries to CGRP family peptides in pregnancies complicated by fetal growth restriction[J]. J Clin Endocrinol Metab, 2016, 101(8): 2984-2993. DOI: 10.1210/jc.2016-1798.
|
[30] |
Heinz L, Kim GJ, Marrakchi S, et al. Mutations in SULT2B1 cause autosomal-recessive congenital ichthyosis in humans[J]. Am J Hum Genet, 2017, 100(6): 926-939. DOI: 10.1016/j.ajhg.2017.05.007
|
[31] |
Falany CN, Rohn-Glowacki KJ. SULT2B1: unique properties and characteristics of a hydroxysteroid sulfotransferase family[J]. Drug Metab Rev, 2013, 45(4): 388-400. DOI: 10.3109/03602532.2013.835609.
|
[32] |
Aminkeng F, Ross CJ, Rassekh SR, et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity[J]. Br J Clin Pharmacol, 2016, 82(3): 683-695. DOI: 10.1111/bcp.13008.
|
[33] |
Hevir N, Ribič-Pucelj M, Lanišnik Rižner T. Disturbed balance between phase Ⅰ and Ⅱ metabolizing enzymes in ovarian endometriosis: a source of excessive hydroxy-estrogens and ROS?[J]. Mol Cell Endocrinol, 2013, 367(1-2): 74-84. DOI: 10.1016/j.mce.2012.12.019.
|
[34] |
Tingting C, Shizhou Y, Songfa Z, et al. Human papillomavirus 16E6/E7 activates autophagy via Atg9B and LAMP1 in cervical cancer cells[J]. Cancer Med, 2019, 8(9): 4404-4416. DOI: 10.1002/cam4.2351.
|
[35] |
Ma Z, Qi Z, Shan Z, et al. The role of CRP and ATG9B expression in clear cell renal cell carcinoma[J]. Biosci Rep, 2017, 37(6): BSR20171082. DOI: 10.1042/BSR20171082.
|
[36] |
Wang N, Tan HY, Li S, et al. Atg9b deficiency suppresses autophagy and potentiates endoplasmic reticulum stress-associated hepatocyte apoptosis in hepatocarcinogenesis[J]. Theranostics, 2017, 7(8): 2325-2338. DOI: 10.7150/thno.18225.
|
[37] |
Zhang X, Li C, Wang D, et al. Aberrant methylation of ATG2B, ATG4D, ATG9A and ATG9B CpG island promoter is associated with decreased mRNA expression in sporadic breast carcinoma[J]. Gene, 2016, 590(2): 285-292. DOI: 10.1016/j.gene.2016.05.036.
|
[38] |
Kataria H, Alizadeh A, Karimi-Abdolrezaee S. Neuregulin-1/ErbB network: an emerging modulator of nervous system injury and repair[J]. Prog Neurobiol, 2019, 180: 101643. DOI: 10.1016/j.pneurobio.2019.101643.
|
[40] |
Geethadevi A, Parashar D, Bishop E, et al. ERBB signaling in CTCs of ovarian cancer and glioblastoma[J]. Genes Cancer, 2017, 8(11-12): 746-751. DOI: 10.18632/genesandcancer.162.
|
[41] |
Sanchez-Soria P, Camenisch TD. ErbB signaling in cardiac development and disease[J]. Semin Cell Dev Biol, 2010, 21(9): 929-35. DOI: 10.1016/j.semcdb.2010.09.011.
|