切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2020, Vol. 16 ›› Issue (02) : 171 -180. doi: 10.3877/cma.j.issn.1673-5250.2020.02.008

所属专题: 文献

论著

儿童特发性肾病综合征低IgG血症机制:哺乳动物雷帕霉素靶蛋白过表达对滤泡辅助性T细胞数量的可能影响
刘光磊1, 杨军2, 李成荣2,()   
  1. 1. 深圳市儿童医院肾脏免疫科,广东 518026[现在遵义医科大学第五附属(珠海)医院儿科,广东 519000]
    2. 深圳市儿童医院肾脏免疫科,广东 518026
  • 收稿日期:2019-05-07 修回日期:2020-02-21 出版日期:2020-04-01
  • 通信作者: 李成荣

Mechanism of hypo-IgG in children with idiopathic nephrotic syndrome: the possible influence of mammalian target of rapamycin over expression on follicular helper T cells

Guanglei Liu1, Jun Yang2, Chengrong Li2,()   

  1. 1. Department of Nephrology and Immunology, Shenzhen Children′s Hospital, Shenzhen 518026, Guangdong Province, China (is working in the Department of Pediatrics, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Zhuhai 519000, Guangdong Province, China)
    2. Department of Nephrology and Immunology, Shenzhen Children′s Hospital, Shenzhen 518026, Guangdong Province, China
  • Received:2019-05-07 Revised:2020-02-21 Published:2020-04-01
  • Corresponding author: Chengrong Li
  • About author:
    Corresponding author: Li Chengrong, Email:
  • Supported by:
    Special Scientific Research Project of Public Welfare Profession of National Health and Family Planning Commision(201402012)
引用本文:

刘光磊, 杨军, 李成荣. 儿童特发性肾病综合征低IgG血症机制:哺乳动物雷帕霉素靶蛋白过表达对滤泡辅助性T细胞数量的可能影响[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(02): 171-180.

Guanglei Liu, Jun Yang, Chengrong Li. Mechanism of hypo-IgG in children with idiopathic nephrotic syndrome: the possible influence of mammalian target of rapamycin over expression on follicular helper T cells[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2020, 16(02): 171-180.

目的

探讨儿童特发性肾病综合征(INS)的低免疫球蛋白(Ig)G血症可能机制。

方法

选择2015年9月至2016年10月,于深圳市儿童医院接受治疗的40例激素敏感型INS患儿为研究对象。按照患儿病情,将其分为INS初发组(n=20)和INS缓解组(n=20),选择同期在该院接受健康体检的同年龄健康儿童纳入对照组(n=20)。采用流式细胞术(FCM)检测受试儿外周血单个核细胞(PBMC)中滤泡辅助性T细胞(Tfh,CD4CXCR5ICOShighT)、初始B细胞(CD19CD27IgDB细胞)、转化前记忆B细胞(CD19CD27IgD B细胞)、转化后记忆B细胞(CD19CD27IgD B细胞)及浆细胞(CD19CD27IgDCD38highB细胞)百分比;采用逆转录-聚合酶链反应(RT-PCR),检测受试儿外周血CD4T细胞相关基因mRNA表达水平;采用酶联免疫吸附试验、免疫荧光吸附试验,分别检测受试儿血浆白细胞介素(IL)-2水平、丙二醛浓度。采用单因素方差分析及最小显著性差异(LSD)-t法,对上述指标分别进行3组间及组间两两比较;对其中部分指标的相关性,采用Pearson相关分析法。本研究通过深圳市儿童医院伦理委员会批准(批准日期:2016-04-11),所有受试对象监护人知情并同意。

结果

①INS初发组患儿血清总蛋白及白蛋白水平,以及血浆总IgG、IgG1、IgG2、IgG4水平等6项指标,均显著低于对照组健康儿童,血清总胆固醇浓度,则显著高于对照组,并且差异均有统计学意义(P<0.05)。②INS初发组患儿PBMC中Tfh百分比为(3.9±1.2)%,显著低于对照组的(5.2±1.1)%及INS缓解组的(4.9±1.2)%,并且差异均有统计学意义(P=0.001,P=0.021)。③INS初发组患儿PBMC中,转化后记忆B细胞、浆细胞百分比为(8.4±3.6)%、(7.5±2.0)%,均低于INS缓解组患儿的(11.6±2.7)%、(11.4±3.9)%及对照组健康儿童的(12.2±3.7)%、(12.5±3.4)%,并且差异均有统计学意义(均为P<0.001)。④INS初发组患儿的8项指标,如CD4T细胞相关基因B淋巴细胞诱导成熟蛋白(Blimp)-1、IL-2RαIL-2RβIL-2Rγ、磷脂酰肌醇3激酶(PI3K)、丝氨酸/苏氨酸蛋白激酶(AKT)、哺乳动物雷帕霉素靶蛋白(mTOR)及雷帕霉素结合蛋白复合物(mTORC)1mRNA表达水平为(3.2±1.1)、(14.4±5.7)、(18.5±4.6)、(7.2±1.7)、(10.3±3.6)、(2.2±0.3)、(1.84±0.68)、(7.2±1.4),均高于INS缓解组患儿的(2.4±1.1)、(10.5±2.5)、(15.5±3.5)、(5.5±1.1)、(8.5±2.2)、(1.8±0.5)、(1.44±0.29)、(6.1±1.2)及对照组健康儿童的(2.4±1.1)、(10.3±5.5)、(14.6±4.8)、(5.6±2.5)、(1.56±0.42)、(2.4±1.1)、(10.3±5.5)、(14.6±4.8);而B细胞淋巴瘤因子(BCL)-6 mRNA表达水平为(1.22±0.29),则低于INS缓解组患儿的(1.49±0.35)及对照组健康儿童的(1.56±0.42),并且上述差异均有统计学意义(均为P<0.05)。⑤INS初发组患儿血浆IL-2水平及丙二醛浓度为(28.9±6.1) ng/L、(15.0±9.2) μmol/L,均高于INS缓解组患儿的(18.0±5.9) ng/L、(7.3±5.4) μmol/L及对照组健康儿童的(16.2±7.6) ng/L、(8.8±5.1) μmol/L,并且差异均有统计学意义(P<0.001、P=0.022,P<0.001、P=0.004)。⑥INS缓解组患儿与对照组健康儿童上述21项指标比较,差异均无统计学意义(P>0.05)。⑦60例受试儿PBMC中Tfh百分比与血浆IgG水平、浆细胞百分比,均呈正相关关系(r=0.692、0.809,P<0.001)。INS初发组20例患儿血浆丙二醛浓度与mTORmTORC1mRNA表达水平,亦均呈正相关关系(r=0.627、P=0.003,r=0.794、P<0.001)。

结论

INS患儿PBMC中Tfh百分比下降影响B细胞分化成熟,可能是导致患儿低IgG血症的原因之一。血浆IL-2水平升高和高脂血症导致的mTOR和mTORC1过表达,可能是抑制INS患儿Tfh分化的重要原因。

Objective

To investigate the possible mechanism of hypogammaglobulinemia in pediatric idiopathic nephrotic syndrome (INS).

Methods

A total of 40 children with steroid-sensitive INS from September 2015 to October 2016 in Shenzhen Children′s Hospital were selected as research subjects. According to pathogenetic condition, they were divided into new onset INS group (n=20) and remission INS group (n=20). Meanwhile, in the same hospital there were 20 undergoing physical examination children with age matching the research subjects were enrolled into control group (n=20). The percentage of follicular helper T cell(Tfh, CD4+ CXCR5+ ICOShigh T cell), naive B cells (CD19+ CD27-IgD+ B cells), pre-transformed memory B cells (CD19+ CD27+ IgD+ B cells), transformed memory B cells (CD19+ CD27+ IgD- B cells) and plasma cells (CD19+ CD27+ IgD-CD38high B cells) in peripheral blood mononuclear cell (PBMC) were analyzed by flow cytometry (FCM). Reverse transcription-polymerase chain reaction (RT-PCR) was performed to analyze mRNA expression level of CD4+ T cells related genes in peripheral blood. Plasma level of interleukin (IL)-2 and plasma concentrations of malondialdehyde were detected by enzyme linked immunosorbent assay and immunofluorescence adsorption test, respectively. Clinical data were compared among three groups and pairwise compared between two groups using one-way ANOVA and least significant difference (LSD)-t test, respectively. And Pearson′s correlation analysis was used to analyze the correlation between some of two indexes.The study was approved by the Ethics Committee of Shenzhen Children′s Hospital (Approval date: April 11, 2016), and all guardians of children signed the informed consent forms for clinical study.

Results

①The serum levels of total protein and albumin, also plasma immunoglobulin (Ig)G, IgG1, IgG2 and IgG4 of children with INS in new onset INS group were lower than those of control group, while serum total cholesterol concentration was higher than that of control group, and the differences were statistically significant (P<0.05). ②The percentage of Tfh in PBMC of children with INS in new onset INS group was (3.9±1.2)%, which was lower than that of (5.2±1.1)% in control group and (4.9±1.2)% in remission INS group, and the differences were statistically significant (P=0.001, P=0.021). ③The percentage of transformed memory B cells and plasma cells in PBMC of children with INS in new onset INS group were (8.4±3.6)% and (7.5±2.0)%, which were lower than those of (11.6±2.7)% and (11.4±3.9)% in remission INS group and (12.2±3.7)% and (12.5±3.4)% in control group, and the differences were statistically significant (all P<0.001). ④The mRNA expression levels of CD4+ T cells related genes of B lymphocyte induced maturation protein (Blimp)-1, IL-2Rα, IL-2Rβ, IL-2Rγ, phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase (AKT), mammalian target of rapamycin (mTOR) and mechanistic target of rapamycin complex (mTORC)1 of children with INS in new onset INS group were (3.2±1.1), (14.4±5.7), (18.5±4.6), (7.2±1.7), (10.3±3.6), (2.2±0.3), (1.84±0.68) and (7.2±1.4), which were higher than those of (2.4±1.1), (10.5±2.5), (15.5±3.5), (5.5±1.1), (8.5±2.2), (1.8±0.5), (1.44±0.29) and (6.1±1.2) in remission INS group and (2.4±1.1), (10.3±5.5), (14.6±4.8), (5.6±2.5), (1.56±0.42), (2.4±1.1), (10.3±5.5) and (14.6±4.8) in control group; while mRNA expression level of B-cell lymphoma (BCL)-6 in new onset INS group was (1.22±0.29), which was lower than that of (1.49±0.35) in remission INS group and (1.56±0.42) in control group, and all the differences above were statistically significant (all P<0.05). ⑤Plasma level of IL-2 and concentration of malondialdehyde of children with INS in new onset INS group were (28.9±6.1) ng/L, (15.0±9.2) μmol/L, which were higher than those of (18.0±5.9) ng/L, (7.3±5.4) μmol/L in remission INS group and (16.2±7.6) ng/L, (8.8±5.1) μmol/L in control group, and the differences were statistically significant(P<0.001, P=0.022; P<0.001, P=0.004). ⑥There were no significant differences between remission INS group and control group in all these above mentioned 21 indexes (P>0.05). ⑦ The percentage of Tfh in PBMC of 60 participants were positively correlated with their plasma IgG levels and the percentage of plasma cells (r=0.692, 0.809; P<0.001). Plasma concentration of malondialdehyde of 20 children with INS in new onset INS group were positively correlated with mRNA expression levels of mTOR and mTORC1 genes (r=0.627, P=0.003; r=0.794, P<0.001).

Conclusions

Decrease of percentage of Tfh in PBMC of children with INS effected on differentiation and maturation of B cells, which might be one of the reasons that resulted in hypogammaglobulinemia. Over expression of mTOR and mTORC1 caused by increased plasma IL-2 level and hyperlipidemia could be an important reason to inhibit the differentiation of Tfh in children with INS.

表1 本研究CD4T细胞相关基因引物信息
表2 3组受试儿一般临床资料比较
表3 3组受试儿血浆免疫球蛋白水平比较(g/L,±s)
图1 3组受试儿外周血中的Tfh流式细胞术检测示意图[图1A:CD4T细胞的SSC与FSC散点图;图1B:CD4CXCR5T细胞(方框内);图1C:3组受试儿PBMC中Tfh百分比(对照组为5.2%、INS初发组为3.9%、INS缓解组为4.9%)]
图2 60例受试儿PBMC中Tfh百分比与血浆IgG水平相关性分析的散点图
图3 3组受试儿外周血单个核细胞中不同分化阶段B细胞流式细胞术检测示意图[图3A:SSC与FSC散点图;图3B:外周血中B细胞(方框内);图3C:3组受试儿FBMC中不同分化阶段B细胞百分比;图3D:3组受试儿PBMC中浆细胞百分比]
图4 60例受试儿PBMC中Tfh百分比与浆细胞百分比相关性分析的散点图
表4 3组受试儿外周血单个核细胞中不同分化阶段B细胞百分比比较(%,±s)
表5 3组受试儿外周血CD4T细胞相关基因mRNA相对表达水平比较(±s)
图5 20例INS初发组患儿血浆丙二醛浓度与mTORmTORC1基因mRNA相对表达水平相关性分析的散点图
表6 3组受试儿血浆IL-2水平及丙二醛浓度比较(±s)
[1]
Eddy AA, Symons JM. Nephrotic syndrome in childhood[J]. Lancet, 2003, 362(9384): 629-639. DOI: 10.1016/S0140-6736(03)14184-0.
[2]
Kemper MJ, Altrogge H, Ganschow R, et al. Serum levels of immunoglobulins and IgG subclasses in steroid sensitive nephrotic syndrome[J]. Pediatr Nephrol, 2002, 17(6): 413-417. DOI: 10.1007/s00467-001-0817-7.
[3]
Peterson PA, Berggård I. Urinary immunoglobulin components in normal, tubular, and glomerular proteinuria: quantities and characteristics of free light chains, IgG, IgA, and Fcγ fragment[J]. Eur J Clin Invest, 1971, 1(4): 255-264. DOI: 10.1111/eci.1971.1.4.255.
[4]
Heslan JM, Lautie JP, Intrator L, et al. Impaired IgG synthesis in patients with the nephrotic syndrome[J]. Clin Nephrol, 1982, 18(3): 144-147.
[5]
Schaerli P, Willimann K, Lang AB, et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function[J]. J Exp Med, 2000, 192(11): 1553-1562. DOI: 10.1084/jem.192.11.1553.
[6]
Ma CS, Deenick EK. Human T follicular helper (Tfh) cells and disease[J]. Immunol Cell Biol, 2014, 92(1): 64-71. DOI: 10.1038/icb.2013.55.
[7]
Ballesteros-Tato A, León B, Graf BA, et al. Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation[J]. Immunity, 2012, 36(5): 847-856. DOI: 10.1016/j.immuni.2012.02.012.
[8]
Nurieva RI, Podd A, Chen Y, et al. STAT5 protein negatively regulates T follicular helper (Tfh) cell generation and function[J]. J Biol Chem, 2012, 287(14): 11234-11239. DOI: 10.1074/jbc.M111.324046.
[9]
Ray JP, Staron MM, Shyer JA, et al. The interleukin-2-mTORC1 kinase axis defines the signaling, differentiation, and metabolism of T helper 1 and follicular B helper T cells[J]. Immunity, 2015, 43(4): 690-702. DOI: 10.1016/j.immuni.2015.08.017.
[10]
Glazer HP, Osipov RM, Clements RT, et al. Hypercholesterolemia is associated with hyperactive cardiac mTORC1 and mTORC2 signaling[J]. Cell Cycle, 2009, 8(11): 1738-1746. DOI: 10.4161/cc.8.11.8619.
[11]
Sarbassov DD, Sabatini DM. Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex[J]. J Biol Chem, 2005, 280(47): 39505-39509. DOI: 10.1074/jbc.M506096200.
[12]
中华医学会儿科学分会肾脏学组. 儿童激素敏感、复发/依赖肾病综合征诊治循证指南(2016)[J].中华儿科杂志,2017, 55(10): 729-732. DOI: 10.3760/cma.j.issn.0578-1310.2017.10.003.
[13]
Craft JE. Follicular helper T cells in immunity and systemic autoimmunity[J]. Nat Rev Rheumatol, 2012, 8(6): 337-347. DOI: 10.1038/nrrheum.2012.58.
[14]
Good-Jacobson KL, Szumilas CG, Chen L, et al. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells[J]. Nat Immunol, 2010, 11(6): 535-542. DOI: 10.1038/ni.1877.
[15]
Cerutti A, Cols M, Puga I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes[J]. Nat Rev Immunol, 2013, 13(2): 118-132. DOI: 10.1038/nri3383.
[16]
Tsai LM, Yu D. Follicular helper T-cell memory: establishing new frontiers during antibody response[J]. Immunol Cell Biol, 2014, 92(1): 57-63. DOI: 10.1038/icb.2013.68.
[17]
Laplante M, Sabatini DM. mTOR signaling in growth control and disease[J]. Cell, 2012, 149(2): 274-293. DOI: 10.1016/j.cell.2012.03.017.
[18]
Delgoffe GM, Pollizzi KN, Waickman AT, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2[J]. Nat Immunol, 2011, 12(4): 295-303. DOI: 10.1038/ni.2005.
[19]
Tan P, Wang YJ, Li S, et al. The PI3K/Akt/mTOR pathway regulates the replicative senescence of human VSMCs[J]. Mol Cell Biochem, 2016, 422(1-2): 1-10. DOI: 10.1007/s11010-016-2796-9.
[20]
Sahin K, Orhan C, Tuzcu M, et al. Orally administered lycopene attenuates diethylnitrosamine-induced hepatocarcinogenesis in rats by modulating Nrf-2/HO-1 and Akt/mTOR pathways[J]. Nutr Cancer, 2014, 66(4): 590-598. DOI: 10.1080/01635581.2014.894092.
[21]
Delgoffe GM, Kole TP, Zheng Y, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment[J]. Immunity, 2009, 30(6): 832-844. DOI: 10.1016/j.immuni.2009.04.014.
[22]
Powell JD, Pollizzi KN, Heikamp EB, et al. Regulation of immune responses by mTOR[J]. Annu Rev Immunol, 2012, 30: 39-68. DOI: 10.1146/annurev-immunol-020711-075024.
[23]
Zeng H, Cohen S, Guy C, et al. mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation[J]. Immunity, 2016, 45(3): 540-554. DOI: 10.1016/j.immuni.2016.08.017.
[1] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[2] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[3] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[4] 刘婷婷, 林妍冰, 汪珊, 陈幕荣, 唐子鉴, 代东伶, 夏焙. 超声衰减参数成像评价儿童代谢相关脂肪性肝病的价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 787-794.
[5] 周钰菡, 肖欢, 唐毅, 杨春江, 周娟, 朱丽容, 徐娟, 牟芳婷. 超声对儿童髋关节暂时性滑膜炎的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 795-800.
[6] 米洁, 陈晨, 李佳玲, 裴海娜, 张恒博, 李飞, 李东杰. 儿童头面部外伤特点分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 511-515.
[7] 王蕾, 王少华, 牛海珍, 尹腾飞. 儿童腹股沟疝围手术期风险预警干预[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 768-772.
[8] 李芳, 许瑞, 李洋洋, 石秀全. 循证医学理念在儿童腹股沟疝患者中的应用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 782-786.
[9] 彭永辉, 张文杰, 李炳根, 聂向阳, 吴凯, 杨六成. 单孔双针疝囊高位结扎术在儿童巨大腹股沟疝的临床应用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 566-569.
[10] 周顺, 赵素侠, 时静静, 吴双双, 吴圆圆, 李金山. 丙泊酚-舒芬太尼复合七氟烷吸入对小儿腹腔镜疝囊高位结扎术的麻醉效果及安全性[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 603-607.
[11] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[12] 卓少宏, 林秀玲, 周翠梅, 熊卫莲, 马兴灶. CD64指数、SAA/CRP、PCT联合检测在小儿消化道感染性疾病鉴别诊断中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 505-509.
[13] 刘笑笑, 张小杉, 刘群, 马岚, 段莎莎, 施依璐, 张敏洁, 王雅晳. 中国学龄前儿童先天性心脏病流行病学研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1021-1024.
[14] 李静, 张玲玲, 邢伟. 兴趣诱导理念用于小儿手术麻醉诱导前的价值及其对家属满意度的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 812-817.
[15] 徐玲玲, 田汉, 闻萍, 何伟春. 利妥昔单抗治疗难治性微小病变性肾病一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(05): 617-621.
阅读次数
全文


摘要