切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2018, Vol. 14 ›› Issue (06) : 736 -739. doi: 10.3877/cma.j.issn.1673-5250.2018.06.018

所属专题: 文献

综述

蛋白质O-GlcNAc糖基化修饰的生物合成途径与检测方法
李楠1, 李忻琳1, 韦立红1, 林忠1,()   
  1. 1. 545001 广西壮族自治区,柳州市妇幼保健院生殖健康助孕中心
  • 收稿日期:2018-05-30 修回日期:2018-10-26 出版日期:2018-12-01
  • 通信作者: 林忠

Biosynthetic pathways and detection methods of protein O-GlcNAc glycosylation modification

Nan Li1, Xinlin Li1, Lihong Wei1, Zhong Lin1,()   

  1. 1. Reproductive Medicine Center, Liuzhou Maternal and Child Healthcare Hospital, Liuzhou 545001, Guangxi Zhuang Autonomous Region, China
  • Received:2018-05-30 Revised:2018-10-26 Published:2018-12-01
  • Corresponding author: Zhong Lin
  • About author:
    Corresponding author: Lin Zhong, Email:
  • Supported by:
    Natural Science Foundation of Guangxi Zhuang Autonomous Region(2015GXNSFBA139177); Self-Financing Research Program of Health and Family Planning Commission of Guangxi Zhuang Autonomous Region(Z2015180, Z2016558, Z2016560); Fund Project of Scientific Research and Technological Development of Liuzhou City(2015J030515, 2016G020217)
引用本文:

李楠, 李忻琳, 韦立红, 林忠. 蛋白质O-GlcNAc糖基化修饰的生物合成途径与检测方法[J]. 中华妇幼临床医学杂志(电子版), 2018, 14(06): 736-739.

Nan Li, Xinlin Li, Lihong Wei, Zhong Lin. Biosynthetic pathways and detection methods of protein O-GlcNAc glycosylation modification[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2018, 14(06): 736-739.

蛋白质氧连-N-乙酰氨基葡萄糖(O-GlcNAc)糖基化修饰,是一种重要的蛋白质翻译后修饰(PTM),广泛存在于细胞核和细胞质中。蛋白质O-GlcNAc糖基化修饰,由O-GlcNAc转移酶(OGT)和O-GlcNAc水解酶(OGA)共同维持细胞内糖基化水平稳定,动态调节细胞信号转导途径中多种酶的功能,在许多生命活动中发挥着重要调节作用,并与多种代谢性疾病,如妊娠期糖尿病等的发生密切相关。笔者拟就蛋白质O-GlcNAc糖基化的生物合成途径、检测方法的最新研究进展进行综述。

Protein O-linked N-acetylglucosamine (O-GlcNAc) glycosylation modification is one of the most important contents of protein post translation modification (PTM). Most of the protein O-GlcNAc glycosylation modifications take place at cell nucleus and cytoplasm. During the process of protein O-GlcNAc glycosylation modification, O-linked N-acetylglucosaminyltransferase (OGT) and O-linked N-acetylglucosaminidase (OGA) together maintain the stability of intracellular glycosylation levels. Protein O-GlcNAc glycosylation modification can dynamically regulate the functions of various enzymes in cell signal transduction pathway, and it plays an important regulatory role in many life activities, and it is closely related to the occurrence of various metabolic diseases such as gestational diabetes. The authors intend to review the latest research progress of the biosynthetic pathways and detection methods of protein O-GlcNAc glycosylation.

[1]
Yang X, Qian K. Protein O-GlcNAcylation: emerging mechanisms and functions[J]. Nat Rev Mol Cell Biol, 2017, 18(7): 452-465.
[2]
Kim EJ. In vitro biochemical assays for O-glcnac-processing enzymes[J]. Chembiochem, 2017, 18(15): 1462-1472.
[3]
Wright JN, Collins HE, Wende AR, et al. O-GlcNAcylation and cardiovascular disease[J]. Biochem Soc Trans, 2017, 45(2): 545-553.
[4]
Worth M, Li H, Jiang J. Deciphering the functions of protein O-GlcNAcylation with chemistry[J]. ACS Chem Biol, 2017, 12(2): 326-335.
[5]
Levine ZG, Walker S. The biochemistry of O-GlcNAc transferase: which functions make it essential in mammalian cells [J]. Annu Rev Biochem, 2016, 85(5): 631-657.
[6]
Leturcq M, Lefebvre T, Vercoutter-Edouart AS. O-GlcNAcylation and chromatin remodeling in mammals: an up-to-date overview[J]. Biochem Soc Trans, 2017, 45(2): 323-338.
[7]
Wang Z, Gucek M, Hart GW. Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc[J]. Proc Natl Acad Sci USA, 2008, 105(37): 13793-13798.
[8]
Hart GW, Housley MP, Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins[J]. Nature, 2007, 446(7139): 1017-1022.
[9]
Wang Z, Udeshi ND, O′Malley M, et al. Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry[J]. Mol Cell Proteomics, 2010, 9(1): 153-160.
[10]
Kearse KP, Hart GW. Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins[J]. Pro Natl Acad Sci USA, 1991, 88(5): 1701-1705.
[11]
Wells L, Gao Y, Mahoney JA, et al. Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic beta-N-acetylglucosaminidase, O-GlcNAcase[J]. J Biol Chem, 2002, 277(3): 1755-1761.
[12]
Khoury GA, Baliban RC, Floudas CA. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database[J]. Sci Rep, 2011, 1: 90.
[13]
Hanover JA, Krause MW, Love DC. The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine[J]. Biochim Biophys Acta, 2010, 1800(2): 80-95.
[14]
Boehmelt G, Wakeham A, Elia A, et al. Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells[J]. EMBO J, 2000, 19(19): 5092-5104.
[15]
Mailleux F, Gélinas R, Beauloy C, et al. O-GlcNAcylation, enemy or ally during cardiac hypertrophy development [J]. Biochim Biophys Acta, 2016, 1862(12): 2232-2243.
[16]
Zhao L, Feng Z, Yang X, et al. The regulatory roles of O-GlcNAcylation in mitochondrial homeostasis and metabolic syndrome[J]. Free Radic Res, 2016, 50(10): 1080-1088.
[17]
Hardivillé S, Hart GW. Nutrient regulation of gene expression by O-GlcNAcylation of chromatin[J]. Curr Opin Chem Biol, 2016, 33: 88-94.
[18]
Aquino-Gil M, Pierce A, Perez-Cervera Y, et al. OGT: a short overview of an enzyme standing out from usual glycosyltransferases[J]. Biochem Soc Trans, 2017, 45(2): 365-370.
[19]
Gambetta MC, Müller J. A critical perspective of the diverse roles of O-GlcNAc transferase in chromatin[J]. Chromosoma, 2015, 124(4): 429-442.
[20]
Couto N, Davlyatova L, Evans CA, et al. Application of the broadband collision-induced dissociation (bbCID) mass spectrometry approach for protein glycosylation and phosphorylation analysis[J]. Rapid Commun Mass Spectrom, 2018, 32(2): 75-85.
[21]
Trapannone R, Rafie K, van Aalten DM. O-GlcNAc transferase inhibitors: current tools and future challenges[J]. Biochem Soc Trans, 2016, 44(1): 88-93.
[22]
Peterson SB, Hart GW. New insights: a role for O-GlcNAcylation in diabetic complications[J]. Crit Rev Biochem Mol Biol, 2016, 51(3): 150-161.
[23]
Sun C, Shang J, Yao Y, et al. O-GlcNAcylation: a bridge between glucose and cell differentiation[J]. J Cell Mol Med, 2016, 20(5): 769-781.
[24]
Toivonen MH, Pöllänen E, Ahtiainen M, et al. OGT and OGA expression in postmenopausal skeletal muscle associates with hormone replacement therapy and muscle cross-sectional area[J]. Exp Gerontol, 2013, 48(12): 1501-1504.
[25]
Banazadeh A, Veillon L, Wooding KM, et al. Recent advances in mass spectrometric analysis of glycoproteins[J]. Electrophoresis, 2017, 38(1): 162-189.
[26]
Orlando R. Quantitative analysis of glycoprotein glycans[J]. Methods Mol Biol, 2013, 951: 197-215.
[27]
Radoff S, Makita Z, Vlassara H. Radioreceptor assay for advanced glycosylation end products.[J]. Diabetes, 1991, 40(12): 1731-1738.
[28]
Ahn YH, Kim JY, Yoo JS. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods[J]. Mass Spectrom Rev, 2015, 34(2): 148-165.
[29]
Kim U, Oh MJ, Seo Y, et al. Sensitive and comprehensive analysis of O-glycosylation in biotherapeutics: a case study of novel erythropoiesis stimulating protein[J]. Bioanalysis, 2017, 9(18): 1373-1383.
[30]
Alley WR Jr, Mann BF, Novotny MV. High-sensitivity analytical approaches for the structural characterization of glycoproteins[J]. Chem Rev, 2013, 113(4): 2668-2732.
[31]
Qin X, Guo Y, Du H, et al. Comparative analysis for glycopatterns and complex-type N-glycans of glycoprotein in sera from chronic hepatitis B- and C-Infected patients[J]. Front Physiol, 2017, 8: 596.
[32]
de Fátima MenegociEugênio P, Assunξão NA, Sciandra F, et al. Quantification, 2DE analysis and identification of enriched glycosylated proteins from mouse muscles: difficulties and alternatives[J]. Electrophoresis, 2016, 37(2): 321-334.
[33]
Li J, Wang JJ, Wen LQ, et al. An OGA-resistant probe allows specific visualization and accurate identification of O-GlcNAc-modified proteins in cells[J]. ACS Chem Biol, 2016, 11(11): 3002-3006.
[34]
Okuda T. Western blot data using two distinct anti-O-GlcNAc monoclonal antibodies showing unique glycosylation status on cellular proteins under 2-deoxy-d-glucose treatment[J]. Data Brief, 2017, 10: 449-453.
[35]
Reeves RA, Lee A, Henry R, et al. Characterization of the specificity of O-GlcNAc reactive antibodies under conditions of starvation and stress[J]. Anal Biochem, 2014, 457: 8-18.
[36]
Hirosawa M, Hayakawa K, Yoneda C, et al. Novel O-GlcNAcylation on Ser(40) of canonical H2A isoforms specific to viviparity[J]. Sci Rep, 2016, 6: 31785.
[37]
Vocadlo DJ, Hang HC, Kim EJ, et al. A chemical approach for identifying O-GlcNAc-modified proteins in cells[J]. Proc Natl Acad Sci USA, 2003, 100(16): 9116-9121.
[38]
Hahne H, Sobotzki N, Nyberg T, et al. Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry[J]. J Proteome Res, 2013, 12(2): 927-936.
[1] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
[2] 邬龙海, 黄淼, 龚云辉, 喻云倩. 血清趋化因子在妊娠期糖尿病孕妇中的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 357-362.
[3] 冯丹艳, 曹晓辉, 史玉霞. 血清脂联素与胎盘亮氨酸氨肽酶对妊娠期糖尿病患者妊娠结局的影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 302-308.
[4] 张佳妮, 毛赤慧, 曹祺, 王晓东. 妊娠期糖尿病患者产后糖代谢异常转归影响因素分析[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(01): 53-60.
[5] 王艳, 郭凤军, 查文慧, 刘畅, 栾亚萍, 吴富菊. 肺动脉血流指数及肺表面活性蛋白水平对重度子痫前期合并妊娠期糖尿病孕妇围生儿肺成熟度的临床应用价值[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(06): 692-698.
[6] 张薇, 薛慧, 李光明, 王新. 妊娠期糖尿病患者产后血清白细胞介素-34水平对其糖代谢异常转归及胰岛素抵抗恢复的影响[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(05): 606-611.
[7] 方建红, 张淑红, 徐敏, 杨燕, 卢伟. MTHFR基因多态性与血清叶酸水平对妊娠期糖尿病患者及其妊娠结局的影响[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(03): 291-297.
[8] 冯雪园, 韩萌萌, 马宁. 循环肿瘤细胞的检测及其在乳腺癌中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(03): 231-236.
[9] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[10] 高俊, 蔡林秀, 张曦, 王娟, 李春梅, 胡继红. 老年髋部骨折患者血清戊糖素、RAGE、sRAGE水平与骨密度的关系[J]. 中华老年骨科与康复电子杂志, 2021, 07(02): 105-110.
[11] 贺芳. 浅谈大数据时代妊娠期糖尿病患者健康教育模式[J]. 中华产科急救电子杂志, 2021, 10(02): 78-81.
[12] 吴艳欣, 王子莲. 妊娠期糖尿病的膳食指导原则与实施细节[J]. 中华产科急救电子杂志, 2021, 10(02): 73-77.
[13] 尹建蓝, 陈慧. 妊娠期糖尿病口服降糖药的应用与评价[J]. 中华产科急救电子杂志, 2021, 10(02): 68-72.
[14] 沈袁恒. 医学检验实验室自建检测方法的现状分析与管理展望[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 200-206.
[15] 霍俊艳, 傅瑜. 卵圆孔未闭检测方法临床应用研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(05): 310-313.
阅读次数
全文


摘要