[1] |
Yang X, Qian K. Protein O-GlcNAcylation: emerging mechanisms and functions[J]. Nat Rev Mol Cell Biol, 2017, 18(7): 452-465.
|
[2] |
Kim EJ. In vitro biochemical assays for O-glcnac-processing enzymes[J]. Chembiochem, 2017, 18(15): 1462-1472.
|
[3] |
Wright JN, Collins HE, Wende AR, et al. O-GlcNAcylation and cardiovascular disease[J]. Biochem Soc Trans, 2017, 45(2): 545-553.
|
[4] |
Worth M, Li H, Jiang J. Deciphering the functions of protein O-GlcNAcylation with chemistry[J]. ACS Chem Biol, 2017, 12(2): 326-335.
|
[5] |
Levine ZG, Walker S. The biochemistry of O-GlcNAc transferase: which functions make it essential in mammalian cells [J]. Annu Rev Biochem, 2016, 85(5): 631-657.
|
[6] |
Leturcq M, Lefebvre T, Vercoutter-Edouart AS. O-GlcNAcylation and chromatin remodeling in mammals: an up-to-date overview[J]. Biochem Soc Trans, 2017, 45(2): 323-338.
|
[7] |
Wang Z, Gucek M, Hart GW. Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc[J]. Proc Natl Acad Sci USA, 2008, 105(37): 13793-13798.
|
[8] |
Hart GW, Housley MP, Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins[J]. Nature, 2007, 446(7139): 1017-1022.
|
[9] |
Wang Z, Udeshi ND, O′Malley M, et al. Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry[J]. Mol Cell Proteomics, 2010, 9(1): 153-160.
|
[10] |
Kearse KP, Hart GW. Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins[J]. Pro Natl Acad Sci USA, 1991, 88(5): 1701-1705.
|
[11] |
Wells L, Gao Y, Mahoney JA, et al. Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic beta-N-acetylglucosaminidase, O-GlcNAcase[J]. J Biol Chem, 2002, 277(3): 1755-1761.
|
[12] |
Khoury GA, Baliban RC, Floudas CA. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database[J]. Sci Rep, 2011, 1: 90.
|
[13] |
Hanover JA, Krause MW, Love DC. The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine[J]. Biochim Biophys Acta, 2010, 1800(2): 80-95.
|
[14] |
Boehmelt G, Wakeham A, Elia A, et al. Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells[J]. EMBO J, 2000, 19(19): 5092-5104.
|
[15] |
Mailleux F, Gélinas R, Beauloy C, et al. O-GlcNAcylation, enemy or ally during cardiac hypertrophy development [J]. Biochim Biophys Acta, 2016, 1862(12): 2232-2243.
|
[16] |
Zhao L, Feng Z, Yang X, et al. The regulatory roles of O-GlcNAcylation in mitochondrial homeostasis and metabolic syndrome[J]. Free Radic Res, 2016, 50(10): 1080-1088.
|
[17] |
Hardivillé S, Hart GW. Nutrient regulation of gene expression by O-GlcNAcylation of chromatin[J]. Curr Opin Chem Biol, 2016, 33: 88-94.
|
[18] |
Aquino-Gil M, Pierce A, Perez-Cervera Y, et al. OGT: a short overview of an enzyme standing out from usual glycosyltransferases[J]. Biochem Soc Trans, 2017, 45(2): 365-370.
|
[19] |
Gambetta MC, Müller J. A critical perspective of the diverse roles of O-GlcNAc transferase in chromatin[J]. Chromosoma, 2015, 124(4): 429-442.
|
[20] |
Couto N, Davlyatova L, Evans CA, et al. Application of the broadband collision-induced dissociation (bbCID) mass spectrometry approach for protein glycosylation and phosphorylation analysis[J]. Rapid Commun Mass Spectrom, 2018, 32(2): 75-85.
|
[21] |
Trapannone R, Rafie K, van Aalten DM. O-GlcNAc transferase inhibitors: current tools and future challenges[J]. Biochem Soc Trans, 2016, 44(1): 88-93.
|
[22] |
Peterson SB, Hart GW. New insights: a role for O-GlcNAcylation in diabetic complications[J]. Crit Rev Biochem Mol Biol, 2016, 51(3): 150-161.
|
[23] |
Sun C, Shang J, Yao Y, et al. O-GlcNAcylation: a bridge between glucose and cell differentiation[J]. J Cell Mol Med, 2016, 20(5): 769-781.
|
[24] |
Toivonen MH, Pöllänen E, Ahtiainen M, et al. OGT and OGA expression in postmenopausal skeletal muscle associates with hormone replacement therapy and muscle cross-sectional area[J]. Exp Gerontol, 2013, 48(12): 1501-1504.
|
[25] |
Banazadeh A, Veillon L, Wooding KM, et al. Recent advances in mass spectrometric analysis of glycoproteins[J]. Electrophoresis, 2017, 38(1): 162-189.
|
[26] |
Orlando R. Quantitative analysis of glycoprotein glycans[J]. Methods Mol Biol, 2013, 951: 197-215.
|
[27] |
Radoff S, Makita Z, Vlassara H. Radioreceptor assay for advanced glycosylation end products.[J]. Diabetes, 1991, 40(12): 1731-1738.
|
[28] |
Ahn YH, Kim JY, Yoo JS. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods[J]. Mass Spectrom Rev, 2015, 34(2): 148-165.
|
[29] |
Kim U, Oh MJ, Seo Y, et al. Sensitive and comprehensive analysis of O-glycosylation in biotherapeutics: a case study of novel erythropoiesis stimulating protein[J]. Bioanalysis, 2017, 9(18): 1373-1383.
|
[30] |
Alley WR Jr, Mann BF, Novotny MV. High-sensitivity analytical approaches for the structural characterization of glycoproteins[J]. Chem Rev, 2013, 113(4): 2668-2732.
|
[31] |
Qin X, Guo Y, Du H, et al. Comparative analysis for glycopatterns and complex-type N-glycans of glycoprotein in sera from chronic hepatitis B- and C-Infected patients[J]. Front Physiol, 2017, 8: 596.
|
[32] |
de Fátima MenegociEugênio P, Assunξão NA, Sciandra F, et al. Quantification, 2DE analysis and identification of enriched glycosylated proteins from mouse muscles: difficulties and alternatives[J]. Electrophoresis, 2016, 37(2): 321-334.
|
[33] |
Li J, Wang JJ, Wen LQ, et al. An OGA-resistant probe allows specific visualization and accurate identification of O-GlcNAc-modified proteins in cells[J]. ACS Chem Biol, 2016, 11(11): 3002-3006.
|
[34] |
Okuda T. Western blot data using two distinct anti-O-GlcNAc monoclonal antibodies showing unique glycosylation status on cellular proteins under 2-deoxy-d-glucose treatment[J]. Data Brief, 2017, 10: 449-453.
|
[35] |
Reeves RA, Lee A, Henry R, et al. Characterization of the specificity of O-GlcNAc reactive antibodies under conditions of starvation and stress[J]. Anal Biochem, 2014, 457: 8-18.
|
[36] |
Hirosawa M, Hayakawa K, Yoneda C, et al. Novel O-GlcNAcylation on Ser(40) of canonical H2A isoforms specific to viviparity[J]. Sci Rep, 2016, 6: 31785.
|
[37] |
Vocadlo DJ, Hang HC, Kim EJ, et al. A chemical approach for identifying O-GlcNAc-modified proteins in cells[J]. Proc Natl Acad Sci USA, 2003, 100(16): 9116-9121.
|
[38] |
Hahne H, Sobotzki N, Nyberg T, et al. Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry[J]. J Proteome Res, 2013, 12(2): 927-936.
|