[1] |
BattleDE. Diagnostic and statistical manual of mental disorders (DSM)[J]. Codas, 2013, 25(2): 191-192.
|
[2] |
CavannaAE,SeriS. Tourette′s syndrome[J]. BMJ, 2013, 347: f4964.
|
[3] |
GanosC,RoessnerV,MünchauA. The functional anatomy of Gilles de la Tourette syndrome[J]. Neurosci Biobehav Rev, 2013, 37(6): 1050-1062.
|
[4] |
NeunerI,WernerCJ,ArrublaJ, et al. Imaging the where and when of tic generation and resting state networks in adult Tourette patients[J]. Front Hum Neurosci, 2014, 8(1): 362.
|
[5] |
WangZ,MaiaTV,MarshR, et al. The neural circuits that generate tics in Tourette′s syndrome.[J]. Am J Psychiatry, 2011, 168(12): 1326-1337.
|
[6] |
TinazS,BelluscioBA,MaloneP, et al. Role of the sensorimotor cortex in Tourette syndrome using multimodal imaging[J]. Hum Brain Mapp, 2014, 35(12): 5834-5846.
|
[7] |
ChurchJA,FairDA,DosenbachNU, et al. Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity[J]. Brain, 2009, 132(1): 225-238.
|
[8] |
ChurchJA,WengerKK,DosenbachNUF, et al. Task control signals in pediatric Tourette syndrome show evidence of immature and anomalous functional activity[J]. Front Hum Neurosci, 2009, 3(4): 38.
|
[9] |
BassettDS,BullmoreET. Small-world brain networks revisited[J]. Neuroscientist, 2016, 23(5): 499-516.
|
[10] |
TomasiD,VolkowND. Mapping small-world properties through development in the human brain: disruption in schizophrenia[J]. PLoS One, 2014, 9(4): e96176.
|
[11] |
XiaS,FoxeJJ,SroubekAE, et al. Topological organization of the " small-world" visual attention network in children with attention deficit/hyperactivity disorder (ADHD)[J]. Front Hum Neurosci, 2014, 8(8): 162.
|
[12] |
HeY,DagherA,ChenZ, et al. Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load[J]. Brain, 2009, 132(Pt 12): 3366-3379.
|
[13] |
NelsonHE. A modified card sorting test sensitive to frontal lobe defects[J]. Cortex, 1976, 12(4): 313-324.
|
[14] |
MacLeodCM. Half a century of research on the Stroop effect: an integrative review[J]. Psychol Bull, 1991, 109(2): 163-203.
|
[15] |
LeckmanJF,RiddleMA,HardinMT, et al. The Yale Global Tic Severity Scale: initial testing of a clinician-rated scale of tic severity[J]. J Am Acad Child Adolesc Psychiatry, 1989, 28(4): 566-573.
|
[16] |
ZhangJ,WangJ,WuQ, et al. Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder[J]. Biol Psychiatry, 2011, 70(4): 334-342.
|
[17] |
SuoX,LeiD,LiK, et al. Disrupted brain network topology in pediatric posttraumatic stress disorder: a resting-state fMRI study[J]. Hum Brain Mapp, 2015, 36(9): 3677-3686.
|
[18] |
Tzourio-MazoyerN,LandeauB,PapathanassiouD, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. Neuroimage, 2002, 15(1): 273-289.
|
[19] |
BenjaminiY,DraiD,ElmerG, et al. Controlling the false discovery rate in behavior genetics research[J]. Behav Brain Res, 2001, 125(1-2): 279-284.
|
[20] |
SalvadorR,SucklingJ,ColemanMR, et al. Neurophysiological architecture of functional magnetic resonance images of human brain[J]. Cereb Cortex, 2005, 15(9): 1332-1342.
|
[21] |
DecoG,TononiG,BolyM, et al. Rethinking segregation and integration: contributions of whole-brain modelling[J]. Nat Rev Neurosci, 2015, 16(7): 430-439.
|
[22] |
PetersonBS,SkudlarskiP,AndersonAW, et al. A functional magnetic resonance imaging study of tic suppression in Tourette syndrome[J]. Arch Gen Psychiatry, 1998, 55(4): 326-333.
|
[23] |
Hernández-LópezS,BargasJ,SurmeierDJ, et al. D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance[J]. J Neurosci, 1997, 17(9): 3334-3342.
|
[24] |
NicolaSM,SurmeierDJ,MalenkaRC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens[J]. Annu Rev Neurosci, 2000, 23(1): 185-215.
|
[25] |
BerridgeKC,AldridgeJW. Super-stereotypy I: enhancement of a complex movement sequence by systemic dopamine D1 agonists[J]. Synapse, 2000, 37(3): 194-204.
|
[26] |
MinkJW. The basal ganglia// Squire L, Berg D, Bloom FE, et al. Fundamental Neuroscience[M]. 4th Ed. Manhattan: Academic Press, 2014: 653-676.
|
[27] |
GraybielAM. The basal ganglia and chunking of action repertoires[J]. Neurobiol Learn Mem, 1998, 70(1-2): 119-136.
|
[28] |
OtmakhovaN,DuzelE,DeutchAY, et al. The hippocampal-VTA loop: the role of novelty and motivation in controlling the entry of information into long-term memory// Intrinsically motivated learning in natural and artificial systems[M]. Berlin: Springer, 2013: 235-254.
|
[29] |
SchultzW,TremblayL,HollermanJR. Changes in behavior-related neuronal activity in the striatum during learning[J]. Trends Neurosci, 2003, 26(6): 321-328.
|
[30] |
Vogt BA,FinchDM,OlsonCR. Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions[J]. Cereb Cortex, 1992, 2(6): 435-443.
|
[31] |
HagmannP,CammounL,GigandetX, et al. Mapping the structural core of human cerebral cortex[J]. PLoS Biology, 2008, 6(7): e159.
|
[32] |
LeechR,KamouriehS,BeckmannCF, et al. Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control[J]. J Neurosci, 2011, 31(9): 3217-3224.
|
[33] |
HaydenBY,SmithDV,PlattML. Electrophysiological correlates of default-mode processing in macaque posterior cingulate cortex[J]. Proc Natl Acad Sci USA, 2009, 106(14): 5948-5953.
|