[1] |
Liu J, Huang W, Ren C, et al. Flotillin-2 promotes metastasis of nasopharyngeal carcinoma by activating NF-κB and PI3K/Akt3 signaling pathways [J]. Sci Rep, 2015, 5: 11614.
|
[2] |
Xue M, Ji X, Xue C, et al. Caspase-dependent and caspase-independent induction of apoptosis in breast cancer by fucoidan via the PI3K/AKT/GSK3β pathway in vivo and in vitro[J]. Biomed Pharmacother, 2017, 94: 898-908.
|
[3] |
Balar AV, Iyer G, Al-Ahmadie H, et al. Alterations in the PI3K/Akt signaling pathway and association with outcome in invasive high-grade urothelial cancer (UC) [J]. J Clin Oncol, 2012, 30(5): 1255-1256.
|
[4] |
Castillo SD, Vanhaesebroeck B, Sebire NJ. Phosphoinositide 3-kinase: a new kid on the block in vascular anomalies [J]. J Pathol, 2016, 240(4): 387-396.
|
[5] |
Falasca M, Maffucci T. Regulation and cellular functions of class Ⅱ phosphoinositide 3-kinases [J]. Biochem J, 2012, 443(3): 587-601.
|
[6] |
Schoijet AC, Sternlieb T, Alonso GD. The phosphatidylinositol 3-kinase class Ⅲ complex containing TcVps15 and TcVps34 participates in autophagy in trypanosoma cruzi [J]. J Eukaryot Microbiol, 2017, 64(3): 308-321.
|
[7] |
Gonzalez E, McGraw TE. Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling [J]. Proc Natl Acad Sci USA, 2009, 106(17): 7004-7009.
|
[8] |
Santi SA, Lee H. The Akt isoforms are present at distinct subcellular locations [J]. Am J Physiol Cell Physiol, 2010, 298(3): C580-C591.
|
[9] |
Ding L, Biswas S, Morton RE, et al. Akt3 deficiency in macrophages promotes foam cell formation and atherosclerosis in mice [J]. Cell Metab, 2012, 15(6): 861-872.
|
[10] |
Shioi T, Kang PM, Douglas PS, et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice [J]. EMBO J, 2000, 19(11): 2537-2548.
|
[11] |
Bei Y, Zhou Q, Sun Q, et al. Exercise as a platform for pharmacotherapy development in cardiac diseases [J]. Curr Pharm Des, 2015, 21(30): 4409-4416.
|
[12] |
Wu J, Li D, Du L, et al. Ouabain prevents pathological cardiac hypertrophy and heart failure through activation of phosphoinositide 3-kinase α in mouse [J]. Cell Biosci, 2015, 5: 64.
|
[13] |
McMullen JR, Shioi T, Huang WY, et al. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase (p110alpha) pathway [J]. J Biol Chem, 2004, 279(6): 4782-4793.
|
[14] |
Crackower MA, Oudit GY, Kozieradzki I, et al. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways [J]. Cell, 2002, 110(6): 737-749.
|
[15] |
McMullen JR, Amirahmadi F, Woodcock EA, et al. Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy [J]. Proc Natl Acad Sci USA, 2007, 104(2): 612-617.
|
[16] |
Lin RC, Weeks KL, Gao XM, et al. PI3K(p110 alpha) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA [J]. Arterioscler Thromb Vasc Biol, 2010, 30(4): 724-732.
|
[17] |
Mohan ML, Jha BK, Gupta MK, et al. Phosphoinositide 3-kinase γ inhibits cardiac GSK-3 independently of Akt [J]. Sci Signal, 2013, 6(259): ra4.
|
[18] |
Zhabyeyev P, McLean B, Patel VB, et al. Dual loss of PI3Kα and PI3Kγ signaling leads to an age-dependent cardiomyopathy [J]. J Mol Cell Cardiol, 2014, 77: 155-159.
|
[19] |
Matsui T, Li L, Wu JC, et al. Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart [J]. J Biol Chem, 2002, 277(25): 22896-22901.
|
[20] |
Shioi T, McMullen JR, Kang PM, et al. Akt/protein kinase B promotes organ growth in transgenic mice [J]. Mol Cell Biol, 2002, 22(8): 2799-2809.
|
[21] |
Condorelli G, Drusco A, Stassi G, et al. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice [J]. Proc Natl Acad Sci USA, 2002, 99(19): 12333-12338.
|
[22] |
Taniyama Y, Ito M, Sato K, et al. Akt3 overexpression in the heart results in progression from adaptive to maladaptive hypertrophy [J]. J Mol Cell Cardiol, 2005, 38(2): 375-385.
|
[23] |
Bekhite MM, Finkensieper A, Binas S, et al. VEGF-mediated PI3K class IA and PKC signaling in cardiomyogenesis and vasculogenesis of mouse embryonic stem cells [J]. J Cell Sci, 2011, 124(Pt 11): 1819-1830.
|
[24] |
Lelievre E, Bourbon PM, Duan LJ, et al. Deficiency in the p110alpha subunit of PI3K results in diminished Tie2 expression and Tie2(-/-)-like vascular defects in mice [J]. Blood, 2005,105(10): 3935-3938.
|
[25] |
Shiojima I, Sato K, Izumiya Y, et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure [J]. J Clin Invest, 2005, 115(8): 2108-2118.
|
[26] |
Liang W, Oudit GY, Patel MM, et al. Role of phosphoinositide 3-kinase (alpha), protein kinase C, and L-type Ca2+ channels in mediating the complex actions of angiotensin Ⅱ on mouse cardiac contractility [J]. Hypertension, 2010, 56(3): 422-429.
|
[27] |
Lee TM, Lin SZ, Chang NC. Effect of lithium on ventricular remodelling in infarcted rats via the Akt/mTOR signalling pathways [J]. Biosci Rep, 2017, 37(2), pii: BSR20160257.
|
[28] |
Sun H, Kerfant BG, Zhao D, et al. Insulin-like growth factor-1 and PTEN deletion enhance cardiac L-type Ca2+ currents via increased PI3Kalpha/PKB signaling [J]. Circ Res, 2006, 98(11): 1390-1397.
|
[29] |
Yano N, Tseng A, Zhao TC, et al. Temporally controlled overexpression of cardiac-specific PI3Kalpha induces enhanced myocardial contractility--a new transgenic model [J]. Am J Physiol Heart Circ Physiol, 2008, 295(4): H1690-H1694.
|
[30] |
Lu Z, Jiang YP, Wang W, et al. Loss of cardiac phosphoinositide 3-kinase p110α results in contractile dysfunction [J]. Circulation, 2009, 120(4): 318-325.
|
[31] |
Wu CY, Jia Z, Wang W, et al. PI3Ks maintain the structural integrity of T-tubules in cardiac myocytes [J]. PLoS One, 2011, 6(9): e24404.
|
[32] |
Pretorius L, Du XJ, Woodcock EA, et al. Reduced phosphoinositide 3-kinase (p110alpha) activation increases the susceptibility to atrial fibrillation [J]. Am J Pathol, 2009, 175(3): 998-1009.
|
[33] |
Vasudevan NT, Mohan ML, Gupta MK, et al. Inhibition of protein phosphatase 2A activity by PI3Kγ regulates β-adrenergic receptor function [J]. Mol Cell, 2011, 41(6): 636-648.
|
[34] |
Perino A, Ghigo A, Ferrero E, et al. Integrating cardiac PIP3 and cAMP signaling through a PKA anchoring function of p110γ [J]. Mol Cell, 2011, 42(1): 84-95.
|
[35] |
Su D, Zhou Y, Hu S, et al. Role of GAB1/PI3K/AKT signaling high glucose-induced cardiomyocyte apoptosis [J]. Biomed Pharmacother, 2017, 93: 1197-1204.
|
[36] |
Ghigo A, Laffargue M, Li M. PI3K and calcium signaling in cardiovascular disease[J]. Circ Res2017, 121: 282-292.
|
[37] |
Hirsch E, Braccini L, Ciraolo E, et al. Twice upon a time: PI3K′s secret double life exposed [J]. Trends Biochem Sci, 2009, 34(5): 244-248.
|
[38] |
Mohan ML, Naga Prasad SV. Scaffolding function of PI3Kgamma emerges from enzyme's shadow [J]. J Mol Biol, 2017, 429(6): 763-772.
|
[39] |
Madeddu P, Kraenkel N, Barcelos LS, et al. Phosphoinositide 3-kinase gamma gene knockout impairs postischemic neovascularization and endothelial progenitor cell functions [J]. Arterioscler Thromb Vasc Biol, 2008, 28(1): 68-76.
|
[40] |
D'Andrea I, Fardella V, Fardella S, et al. Lack of kinase-independent activity of PI3Kγ in locus coeruleus induces ADHD symptoms through increased CREB signaling [J]. EMBO Mol Med, 2015, 7(7): 904-917.
|
[41] |
Ghigo A, Perino A, Mehel H, et al. Phosphoinositide 3-kinase γ protects against catecholamine-induced ventricular arrhythmia through protein kinase A-mediated regulation of distinct phosphodiesterases [J]. Circulation, 2012, 126(17): 2073-2783.
|
[42] |
Santulli G, Marks AR. Essential roles of intracellular calcium release channels in muscle, brain, metabolism, and aging [J]. Curr Mol Pharmacol, 2015, 8(2): 206-222.
|
[43] |
Ciraolo E, Iezzi M, Marone R, et al. Phosphoinositide 3-kinase p110beta activity: key role in metabolism and mammary gland cancer but not development [J]. Sci Signal, 2008, 1(36): ra3.
|
[44] |
Jia S, Liu Z, Zhang S, et al. Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis [J]. Nature, 2008, 454(7205): 776-779.
|
[45] |
Dou Z, Chattopadhyay M, Pan JA, et al. The class ⅠA phosphatidylinositol 3-kinase p110-beta subunit is a positive regulator of autophagy [J]. J Cell Biol, 2010, 191(4): 827-843.
|
[46] |
Dou Z, Pan JA, Dbouk HA, et al. Class ⅠA PI3K p110β subunit promotes autophagy through Rab5 small GTPase in response to growth factor limitation[J]. Molecular Cell, 2013, 50(1):29.
|
[47] |
Jaber N, Dou Z, Chen JS, et al. Class Ⅲ PI3K Vps34 plays an essential role in autophagy and in heart and liver function [J]. Proc Natl Acad Sci USA, 2012, 109(6): 2003-2008.
|
[48] |
Ghigo A, Franco I, Morello F, et al. Myocyte signalling in leucocyte recruitment to the heart [J]. Cardiovasc Res, 2014, 102(2): 270-280.
|
[49] |
Fougerat A, Gayral S, Gourdy P, et al. Genetic and pharmacological targeting of phosphoinositide 3-kinase-gamma reduces atherosclerosis and favors plaque stability by modulating inflammatory processes [J]. Circulation, 2008, 117(10): 1310-1317.
|
[50] |
Damilano F, Franco I, Perrino C, et al. Distinct effects of leukocyte and cardiac phosphoinositide 3-kinase γ activity in pressure overload-induced cardiac failure [J]. Circulation, 2011, 123(4): 391-399.
|
[51] |
Yoshioka K, Yoshida K, Cui H, et al. Endothelial PI3K-C2α,a class Ⅱ PI3K, has an essential role in angiogenesis and vascular barrier function [J]. Nat Med, 2012, 18(10): 1560-1569.
|
[52] |
Franco I, Gulluni F, Campa CC, et al. PI3K class Ⅱ α controls spatially restricted endosomal PtdIns3P and Rab11 activation to promote primary cilium function [J]. Dev Cell, 2014, 28(6): 647-658.
|