[1] |
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013[J]. CA Cancer J Clin, 2013, 63(1): 11-30.
|
[2] |
Williams KA, Terry KL, Tworoger SS, et al. Polymorphisms of MUC16 (CA125) and MUC1 (CA15.3) in relation to ovarian cancer risk and survival[J]. PLoS One, 2014, 9(2): e88334.
|
[3] |
Terlikowska KM, Dobrzycka B, Witkowska AM, et al. Preoperative HE4, CA125 and ROMA in the differential diagnosis of benign and malignant adnexal masses[J]. J Ovarian Res, 2016, 9(1): 43-45.
|
[4] |
Lacunza E, Baudis M, Colussi AG, et al. MUC1 oncogene amplification correlates with protein overexpression in invasive breast carcinoma cells[J]. Cancer Genet Cytogenet, 2010, 201(2): 102-110.
|
[5] |
Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins[J]. Annu Rev Physiol, 2008, 70: 431-457.
|
[6] |
Ricardo S, Marcos-Silva L, Pereira D, et al. Detection of glyco-mucin profiles improves specificity of MUC16 and MUC1 biomarkers in ovarian serous tumours[J]. Mol Oncol, 2015, 9(2): 503-512.
|
[7] |
Gu Y, Mi W, Ge Y, et al. GlcNAcylation plays an essential role in breast cancer metastasis[J]. Cancer Res, 2010, 70(15): 6344-6351.
|
[8] |
Mi W, Gu Y, Han C, et al. O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy[J]. Biochim Biophys Acta, 2011, 1812(4): 514-519.
|
[9] |
Lynch TP, Ferrer CM, Jackson SR, et al. Critical role of O-GlcNAc transferase in prostate cancer invasion, angiogenesis and metastasis[J]. J Biol Chem, 2012, 287(14): 11070-11081.
|
[10] |
Rao X, Duan X, Mao W, et al. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth[J]. Nat Commun, 2015, 6: 8468.
|
[11] |
Mu AK, Lim BK, Hashim OH, et al. Identification of O-glycosylated proteins that are aberrantly excreted in the urine of patients with early stage ovarian cancer[J]. Int J Mol Sci, 2013, 14(4): 7923-7931.
|
[12] |
Wang X, Abraham S, McKenzie JA, et al. LRG1 promotes angiogenesis by modulating endothelial TGF-β signalling[J]. Nature, 2013, 499(7458): 306-311.
|
[13] |
Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis[J]. Nat Rev Cancer, 2007, 7(10): 763-777.
|
[14] |
Benjamin DI, Louie SM, Mulvihill MM, et al. Inositol phosphate recycling regulates glycolytic and lipid metabolism that drives cancer aggressiveness[J]. ACS Chem Biol, 2014, 9(6): 1340-1350.
|
[15] |
Mukherjee A, Wu J, Barbour S, et al. Lysophosphatidic acid activates lipogenic pathways and de novo lipid synthesis in ovarian cancer cells[J]. J Biol Chem, 2012, 287(30): 24990-25000.
|
[16] |
Pyragius CE, Fuller M, Ricciardelli C, et al. Aberrant lipid metabolism: an emerging diagnostic and therapeutic target in ovarian cancer[J]. Int JMol Sci, 2013, 14(4): 7742-7756.
|
[17] |
Cai Q, Zhao Z, Antalis C, et al. Elevated and secreted phospholipase A2 activities as new potential therapeutic targets in human epithelial ovarian cancer[J]. FASEB J, 2012, 26(8): 3306-3320.
|
[18] |
Shan L, Chen YA, Davis L, et al. Measurement of phospholipids may improve diagnostic accuracy in ovarian cancer[J]. PLoS One, 2012, 7(10): e46846.
|
[19] |
Szmola R, Kukor Z, Sahin-Toth M. Human mesotrypsin is a unique digestive protease specialized for the degradation of trypsin inhibitors[J]. J Biol Chem, 2003, 278(49): 48580-48589.
|
[20] |
Kessenbrock K, Plaks V, Werb Z. Matrix metallopro-teinases: regulators of the tumor microenvironment[J]. Cell, 2010, 141(1): 52-67.
|
[21] |
Ma R, Ye X, Cheng H, et al. PRSS3 expression is associated with tumor progression and poor prognosis in epithelial ovarian cancer[J]. Gynecol Oncol, 2015, 137(3): 546-552.
|
[22] |
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297.
|
[23] |
Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer[J]. Nat Rev Cancer, 2006, 6(4): 259-269.
|
[24] |
Yu L, Todd NW, Xing L, et al. Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers[J]. Int J Cancer, 2010, 127(12): 2870-2878.
|
[25] |
Mahn R, Heukamp LC, Rogenhofer S, et al. Circulating microRNAs (miRNA)in serum of patients with prostate cancer[J]. Urology, 2011, 77(5): 1265. e9-e16.
|
[26] |
Cheng H, Zhang L, Cogdell DE, et al. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis[J]. PLoS One, 2011, 6(3): e17745.
|
[27] |
Chao A, Lai CH, Chen HC, et al. Serum microRNAs in clear cell carcinoma of the ovary[J]. Taiwan J Obstet Gynecol, 2014, 53(4): 536-541.
|
[28] |
Huntoon CJ, Nye MD, Geng L, et al. Heat shock protein 90 inhibition depletes LATS1 and LATS2, two regulators of the mammalian hippo tumor suppressor pathway[J]. Cancer Res, 2010, 70(21): 8642-8650.
|
[29] |
Xu B, Sun D, Wang Z, et al. Expression of LATS family proteins in ovarian tumors and its significance[J]. Hum Pathol, 2015, 46(6): 858-867.
|
[30] |
Lee SG, Su ZZ, Emdad L, et al. Astrocyte elevated gene-1 (AEG-1) is a target gene of oncogenic Ha-ras requiring phosphatidylinositol 3-kinase and c-Myc[J]. Proc Natl Acad Sci USA, 2006, 103(46): 17390-17395.
|
[31] |
Zhou B, Yang J, Shu B, et al. Overexpression of astrocyte-elevated gene-1 is associated with ovarian cancer development and progression[J]. Mol Med Rep, 2015, 11(4): 2981-2990.
|
[32] |
Timms JF, Arslan-Low E, Kabir M, et al. Discovery of serum biomarkers of ovarian cancer using complementary proteomic profiling strategies[J]. Proteomics Clin Appl, 2014, 8(11-12): 982-993.
|
[33] |
Turan G, Usta CS, Usta A, et al. The expression of HER-2/neu (c-erbB2), survivin and cycline D1 in serous ovarian neoplasms: their correlation with clinicopathological variables[J]. J Mol Histol, 2014, 45(6): 679-687.
|
[34] |
Lozneanu L, Avǎdǎnei R, Cîmpean AM, et al. Relationship between the proangiogenic role of eg-vegf, clinicopathological characteristics and survival in tumoral ovary[J]. Rev Med Chir Soc Med Nat Iasi, 2015, 119(2): 461-465.
|