切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2017, Vol. 13 ›› Issue (02) : 135 -138. doi: 10.3877/cma.j.issn.1673-5250.2017.02.003

所属专题: 文献

述评

CXCL12/CXCR4/CXCR7信号通路与妊娠及子痫前期发病机制研究
王亭婷1, 严瑾1, 郑英1, 孔祥1,()   
  1. 1. 225001 江苏,扬州大学医学院(苏北人民医院)妇产科
  • 收稿日期:2016-10-30 修回日期:2017-02-13 出版日期:2017-04-01
  • 通信作者: 孔祥

Research of CXCL12/CXCR4/CXCR7 signal pathway, pregnancy and preeclampsia pathogenesis

Tingting Wang1, Jin Yan1, Ying Zheng1, Xiang Kong1,()   

  1. 1. Department of Obstetrics and Gynecology, Medical School of Yangzhou University (Subei Hospital), Yangzhou 225001, Jiangsu Province, China
  • Received:2016-10-30 Revised:2017-02-13 Published:2017-04-01
  • Corresponding author: Xiang Kong
  • About author:
    Corresponding author: Kong Xiang, Email:
引用本文:

王亭婷, 严瑾, 郑英, 孔祥. CXCL12/CXCR4/CXCR7信号通路与妊娠及子痫前期发病机制研究[J]. 中华妇幼临床医学杂志(电子版), 2017, 13(02): 135-138.

Tingting Wang, Jin Yan, Ying Zheng, Xiang Kong. Research of CXCL12/CXCR4/CXCR7 signal pathway, pregnancy and preeclampsia pathogenesis[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2017, 13(02): 135-138.

子痫前期(PE)是妊娠期特有疾病,其临床表现为孕妇在中、晚孕期出现高血压和蛋白尿等症状,严重时可能导致围生期母婴死亡。该病发病机制迄今尚不清楚。PE与炎症和免疫功能的关系,成为目前临床研究的热点,特别是趋化因子与该病相关性的研究,而CXC趋化因子配体(CXCL)12及CXC趋化因子受体(CXCR)4、7是其中研究的焦点之一。笔者拟就CXCL12/CXCR4/CXCR7信号通路,对滋养细胞的调节和胎盘形成的影响进行阐述,进而探索PE的发病机制。

Preeclampsia (PE) is a pregnancy-specific diseases, pregnant women in the second and third trimesters will appear hypertension and proteinuria and other symptoms, even leading to them perinatal maternal and fetal death. Currently pathogenesis of PE remains unclear, the relationship between PE and inflammation, immunization become a hot clinical research topic, especially about chemokine. Chemokine ligand (CXCL)12 and chemokine receptors (CXCR)4, and CXCR7 is one of the hot topics of PE research. This article talks about how CXCL12/CXCR4/CXCR7 signal pathway regulates trophoblastic cell and placenta formation, in order to explore the pathogenesis of PE.

[1]
Giannubilo SR, Landi B, Ciavattini A. Preeclampsia: what could happen in a subsequent pregnancy[J]. Obstet Gynecol Surv, 2014, 69(12): 747-762.
[2]
Wang L, Li X, Zhao Y, et al. Insights into the mechanism of CXCL12-mediated signaling in trophoblast functions and placental angiogenesis[J]. Acta Biochim Biophys Sin (Shanghai), 2015, 47(9): 663-672.
[3]
Zhao HB, Tang CL, Hou YL, et al. CXCL12/CXCR4 axis triggers the activation of EGF receptor and ERK signaling pathway in CsA-induced proliferation of human trophoblast cells[J]. PLoS One, 2012, 7(7): e38375.
[4]
牛坤汀, 莫碧文, 王志霞, 等. CXCL12-CXCR4/CXCR7信号轴相关疾病研究进展[J]. 山东医药, 2015, 55(17): 89-91.
[5]
Chen G, Wang W, Meng S, et al. CXC chemokine CXCL12 and its receptor CXCR4 in tree shrews (tupaia belangeri): structure, expression and function[J]. PLoS One, 2014, 9(5): e98231.
[6]
Tripathi V, Kumar R, Dinda AK, et al. CXCL12-CXCR7 signaling activates ERK and Akt pathways in human choriocarcinoma cells[J]. Cell Commun Adhes, 2014, 21(4): 221-228.
[7]
Yao C, Li P, Song H, et al. CXCL12/CXCR4 axis upregulates twist to induce EMT in human glioblastoma[J]. Mol Neurobiol, 2016, 53(6): 3948-3953.
[8]
Lyall F, Robson SC, Bulmer JN. Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: relationship to clinical outcome[J]. Hypertension, 2013, 62(6): 1046-1054.
[9]
Knöfler M, Pollheimer J. IFPA award in placentology lecture: molecular regulation of human trophoblast invasion[J]. Placenta, 2012, 33(Suppl): S55-S62.
[10]
孙颖, 李智泉, 周紫琼. 缺氧诱导因子-1α与子痫前期病理特点相关性分析[J]. 中国实用医刊, 2015, 42(12): 96-98.
[11]
Lu J, Zhou WH, Ren L, et al. CXCR4, CXCR7, and CXCL12 are associated with trophoblastic cells apoptosis and linked to pathophysiology of severe preeclampsia[J]. Exp Mol Pathol, 2016, 100(1): 184-191.
[12]
Warner JA, Zwezdaryk KJ, Day B, et al. Human cytomegalovirus infection inhibits CXCL12- mediated migration and invasion of human extravillous cytotrophoblasts[J]. Virol J, 2012, 9: 255.
[13]
Piao HL, Tao Y, Zhu R, et al. The CXCL12/CXCR4 axis is involved in the maintenance of Th2 bias at the maternal/fetal interface in early human pregnancy[J]. Cell Mol Immunol, 2012, 9(5): 423-430.
[14]
Mirandola L, Apicella L, Colombo M, et al. Anti-Notch treatment prevents multiple myeloma cells localization to the bone marrow via the chemokine system CXCR4/SDF-1[J]. Leukemia, 2013, 27(7): 1558-1566.
[15]
Fang Y, Yu S, Ma Y, et al. Association of Dll4/notch and HIF-1a -VEGF signaling in the angiogenesis of missed abortion[J]. PLoS One, 2013, 8(8): e70667.
[16]
Hamed S, Egozi D, Dawood H, et al. The chemokine stromal cell-derived factor-1α promotes endothelial progenitor cell-mediated neovascularization of human transplanted fat tissue in diabetic immunocompromised mice[J]. Plast Reconstr Surg, 2013, 132(2): 239e-250e.
[17]
Quinn KE, Ashley AK, Reynolds LP, et al. Activation of the CXCL12/CXCR4 signaling axis may drive vascularization of the ovine placenta[J]. Domest Anim Endocrinol, 2014, 47: 11-21.
[18]
Zhou Y, Yuge A, Rajah AM, et al. LIMK1 regulates human trophoblast invasion/differentiation and is down-regulated in preeclampsia[J]. Am J Pathol, 2014, 184(12): 3321-3331.
[19]
Iriyama T, Wang W, Parchim NF, et al. Hypoxia-independent upregulation of placental hypoxia inducible factor-1α gene expression contributes to the pathogenesis of preeclampsia[J]. Hypertension, 2015, 65(6): 1307-1315.
[20]
Ren L, Liu YQ, Zhou WH, et al. Trophoblast-derived chemokine CXCL12 promotes CXCR4 expression and invasion of human first-trimester decidual stromal cells[J]. Hum Reprod, 2012, 27(2): 366-374.
[21]
Soares MJ, Chakraborty D, Renaud SJ, et al. Regulatory pathways controlling the endovascular invasive trophoblast cell lineage[J]. J Reprod Dev, 2012, 58(3): 283-287.
[22]
Barrientos G, Tirado-González I, Freitag N, et al. CXCR4 dendritic cells promote angiogenesis during embryo implantation in mice[J]. Angiogenesis, 2013, 16(2): 417-427.
[23]
Kim SC, Moon SH, Lee DH, et al. Differential expressions of stromal cell-derived factor-1α and vascular endothelial growth factor in the placental bed of pregnancies complicated by preeclampsia[J]. Hypertens Pregnancy, 2014, 33(1): 31-40.
[1] 壮健, 潘昌杰, 李晓琴, 于梦霞, 张超, 朱韦文. 剪切波弹性成像技术评估子痫前期胎盘弹性的临床价值[J]. 中华医学超声杂志(电子版), 2022, 19(07): 660-666.
[2] 程慧, 李妍雨, 张蓓, 成杰, 张艳玲. 微小RNA-195靶向趋化因子5抑制滋养细胞增殖、迁移和侵袭及其机制研究[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 165-174.
[3] 刘夕珑, 荣茜, 邢悦, 潘碧琼, 卢丹. 血清氨基末端脑钠肽前体水平与重度子痫前期孕妇妊娠结局的关系[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(06): 709-714.
[4] 鞠捷, 李济宇, 顾建娟, 刘立卓, 吕芳. 血清乳酸脱氢酶检测对子痫前期诊断价值的Meta分析[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(05): 612-620.
[5] 韦先梅, 韩毓, 蒋英彩. 敲减circSERPINE2通过靶向调控miR-34a-5p表达抑制滋养层细胞增殖、迁移和侵袭[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 193-201.
[6] 何豆豆, 孙晓彤, 曲涛, 李忠媛, 杨雪萍. 间充质干细胞源性外泌体对子痫前期滋养层细胞生物学行为影响的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 309-313.
[7] 刘莎莎, 孙国强, 吴利荣. 木犀草素对子痫前期大鼠滋养层细胞凋亡的影响及其机制[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 138-144.
[8] 宋海红, 黎娉, 陈鲜霞. 子宫动脉搏动指数、外周血胎儿血红蛋白及胎盘生长因子水平与早发型子痫前期再次妊娠结局的关系[J]. 中华临床医师杂志(电子版), 2022, 16(11): 1109-1114.
[9] 谢玲, 霍春霞, 张爱萍. sFlt-1、PLGF对孕妇子痫前期的诊断及预测价值[J]. 中华临床医师杂志(电子版), 2022, 16(09): 902-907.
[10] 祝淡抹, 刘雪琼, 卢丹. 母体外周血中炎性标志物与子痫前期的相关性分析[J]. 中华临床医师杂志(电子版), 2021, 15(11): 865-870.
[11] 郑晓芳, 魏宋荃, 黄真轩, 吴文诗, 李桂民, 张红霞, 江庆萍, 陈敦金, 余琳. 子痫前期合并胎儿生长受限的妊娠结局及胎盘病理改变的研究[J]. 中华产科急救电子杂志, 2023, 12(02): 85-92.
[12] 贺芳. 易栓症和子痫前期[J]. 中华产科急救电子杂志, 2023, 12(01): 6-11.
[13] 周燕媚, 孙雯, 林琳, 陈娟娟, 杜培丽, 张慧丽, 陈兢思, 杜丽丽, 陈敦金. 子痫前期并发心力衰竭的诊治和评估[J]. 中华产科急救电子杂志, 2022, 11(04): 228-233.
[14] 王鑫鑫, 樊尚荣. 重度子痫前期并发急性左心衰的诊断和处理[J]. 中华产科急救电子杂志, 2022, 11(02): 77-80.
[15] 杜培丽, 孙雯, 苏春宏, 张春芳, 余琳, 贺芳, 杜丽丽, 陈兢思, 陈敦金. 不同亚型子痫前期患者母儿结局分析[J]. 中华产科急救电子杂志, 2022, 11(01): 33-37.
阅读次数
全文


摘要