1 |
Waite KA, Eng C. From developmental disorder to heritable cancer:it's all in the BMP/TGF-beta family[J]. Nat Rev Genet, 2003, 4(10):763-773.
|
2 |
Ikushima H, Miyazono K. TGFbeta signalling:a complex web in cancer progression[J]. Nat Rev Cancer, 2010, 10(6):415-424.
|
3 |
Massague J. TGFbeta in cancer[J]. Cell, 2008, 134(2):215-230.
|
4 |
Tang B, Vu M, Booker T, et al. TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression[J]. J Clin Invest, 2003, 112(7):1116-1124.
|
5 |
Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression[J]. Nat Genet, 2001, 29(2):117-129.
|
6 |
Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction[J]. J Cell Sci, 2001, 114(Pt 24):4359-4369.
|
7 |
Heldin CH, Moustakas A. Role of Smads in TGFbeta signaling[J]. Cell Tissue Res, 2012, 347(1):21-36.
|
8 |
Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus[J]. Cell, 2003, 113(6):685-700.
|
9 |
Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling[J]. Nature, 2003, 425(6958):577-584.
|
10 |
Yang G, Yang X. Smad4-mediated TGF-beta signaling in tumorigenesis[J]. Int J Biol Sci, 2010, 6(1):1-8.
|
11 |
Hahn SA, Schutte M, Hoque AT, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1[J]. Science, 1996, 271(5247):350-353.
|
12 |
Zhang Y, Musci T, Derynck R. The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function[J]. Curr Biol, 1997, 7(4):270-276.
|
13 |
Joshi A, Cao D. TGF-beta signaling, tumor microenvironment and tumor progression: the butterfly effect[J]. Front Biosci (Landmark Ed), 2010, 15:180-194.
|
14 |
Horie K, Yamashita H, Mogi A, et al. Lack of transforming growth factor-beta type Ⅱ receptor expression in human retinoblastoma cells[J]. J Cell Physiol, 1998, 175(3):305-313.
|
15 |
Arrick BA, Korc M, Derynck R. Differential regulation of expression of three transforming growth factor beta species in human breast cancer cell lines by estradiol[J]. Cancer Res, 1990, 50(2):299-303.
|
16 |
Jeng MH, ten Dijke P, Iwata KK, et al. Regulation of the levels of three transforming growth factor beta mRNAs by estrogen and their effects on the proliferation of human breast cancer cells[J]. Mol Cell Endocrinol, 1993, 97(1-2):115-123.
|
17 |
Jakob J, Nagase S, Gazdar A, et al. Two somatic biallelic lesions within and near SMAD4 in a human breast cancer cell line[J]. Genes Chromosomes Cancer, 2005, 42(4):372-383.
|
18 |
Zhong D, Morikawa A, Guo L, et al. Homozygous deletion of SMAD4 in breast cancer cell lines and invasive ductal carcinomas[J]. Cancer Biol Ther, 2006, 5(6):601-607.
|
19 |
Ren Y, Wu L, Frost AR, et al. Dual effects of TGF-beta on ERalpha-mediated estrogenic transcriptional activity in breast cancer[J]. Mol Cancer, 2009, 8:111.
|
20 |
Wu L, Wu Y, Gathings B, et al. Smad4 as a transcription corepressor for estrogen receptor alpha[J]. J Biol Chem, 2003, 278(17):15192-151200.
|
21 |
Li W, Qiao W, Chen L, et al. Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice[J]. Development, 2010, 130(24):6143-6153.
|
22 |
Giampieri S, Manning C, Hooper S, et al. Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility[J]. Nat Cell Biol, 2009, 11(11):1287-1296.
|
23 |
Mi Z, Guo H, Wai PY, et al. Differential osteopontin expression in phenotypically distinct subclones of murine breast cancer cells mediates metastatic behavior[J]. J Biol Chem, 2004, 279(45):46659-46667.
|
24 |
Kassem L, Deygas M, Fattet L, et al. TIF1γ interferes with TGFβ1/SMAD4 signaling to promote poor outcome in operable breast cancer patients[J]. BMC Cancer, 2015, 15:453.
|
25 |
Xie W, Mertens JC, Reiss DJ, et al. Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study[J]. Cancer Res, 2002, 62(2):497-505.
|
26 |
de Kruijf EM, Dekker TJ, Hawinkels LJ, et al. The prognostic role of TGF-β signaling pathway in breast cancer patients[J]. Ann Oncol, 2013, 24(2):384-390.
|
27 |
Maliekal TT, Antony ML, Nair A, et al. Loss of expression, and mutations of Smad 2 and Smad 4 in human cervical cancer[J]. Oncogene, 2003, 22(31):4889-4897.
|
28 |
Prates J, Franco-Salla GB, Dinarte Dos Santos AR, et al. ANXA1Ac2-26 peptide reduces ID1 expression in cervical carcinoma cultures[J]. Gene, 2015, 570(2):248-254.
|
29 |
Braun L, Düst M, Mikumo R, et al. Differential response of nontumorigenic and tumorigenic human papillomavirus type 16-positive epithelial cells to transforming growth factor beta 1[J]. Cancer Res, 1990, 50(22):7324-32.
|
30 |
Lee S, Cho YS, Shim C, et al. Aberrant expression of smad4 results in resistance against the growth-inhibitory effect of transforming growth factor-beta in the SiHa human cervical carcinoma cell line[J]. Int J Cancer, 2001, 94(4):500-557.
|
31 |
Baldus SE, Schwarz E, Lohrey C, et al. Smad4 deficiency in cervical carcinoma cells[J]. Oncogene, 2005, 24(5):810-819.
|
32 |
Xu Q, Wang S, Xi L, et al. Effects of human papillomavirus type 16 E7 protein on the growth of cervical carcinoma cells and immuno-escape through the TGF-beta1 signaling pathway[J]. Gynecol Oncol, 2006, 101(1):132-139.
|
33 |
Maliekal TT, Antony ML, Nair A, et al. Loss of expression, and mutations of Smad2 and Smad4 in human cervical cancer[J]. Oncogene, 2003, 22(31):4889-4897.
|
34 |
Kloth JN, Kenter GG, Spijker HS, et al. Expression of Smad2 and Smad4 in cervical cancer: absent nuclear Smad4 expression correlates with poorsurvival[J]. Mod Pathol, 2008, 21(7):866-875.
|
35 |
Mhawech-Fauceglia P, Kesterson J, Wang D, et al. Expression and clinical significance of the transforming growth factor-β signalling pathway in endometrial cancer[J]. Histopathology, 2011, 59(1):63-72.
|
36 |
Piestrzeniewicz-Ulanska D, Brys M, Semczuk A, et al. TGF-beta signaling is disrupted in endometrioid-type endometrial carcinomas[J]. Gynecol Oncol, 2004, 95(1):173-1780.
|
37 |
Zhang S, Balch C, Chan MW, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors[J]. Cancer Res, 2008, 68(11):4311-4320.
|
38 |
Yeh KT, Chen TH, Yang HW, et al. Aberrant TGFβ/SMAD4 signaling contributes to epigenetic silencing of a putative tumor suppressor, RunX1T1 in ovarian cancer[J]. Epigenetics, 2011, 6(6):727-739.
|
39 |
Fu G, Peng C. Nodal enhances the activity of FoxO3a and its synergistic interaction with Smads to regulate cyclin G2 transcription in ovarian cancer cells[J]. Oncogene, 2011, 30(37):3953-3966.
|
40 |
Yamada SD, Baldwin RL, Karlan BY. Ovarian carcinoma cell cultures are resistant to TGF-beta1-mediated growth inhibition despite expression of functional receptors[J]. Gynecol Oncol, 1999, 75(1):72-77.
|
41 |
Baldwin RL, Tran H, Karlan BY. Loss of c-myc repression coincides with ovarian cancer resistance to transforming growth factor beta growth arrest independent of transforming growth factor beta/Smad signaling[J]. Cancer Res, 2003, 63(6):1413-1419.
|
42 |
Zhao R, Cui T, Han C, et al. DDB2 modulates TGF-β signal transduction in human ovarian cancer cells by downregulating NEDD4L[J]. Nucleic Acids Res, 2015, 43(16):7838-7849.
|
43 |
Chan MW, Huang YW, Hartman-Frey C, et al. Aberrant transforming growth factor beta1 signaling and SMAD4 nuclear translocation confer epigenetic repression of ADAM19 in ovarian cancer[J]. Neoplasia, 2008, 10(9):908-919.
|
44 |
Scharpfenecker M, van Dinther M, Liu Z, et al. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis[J]. J Cell Sci, 2007, 120(6):964-972.
|
45 |
David L, Mallet C, Mazerbourg S, et al. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells[J]. Blood, 2007, 109(5):1953-1961.
|
46 |
Brown MA, Zhao Q, Baker KA, et al. Crystal structure of BMP-9 and functional interactions with pro-region and receptors[J]. J Biol Chem, 2005, 280(26):25111-25118.
|
47 |
Chen C, Grzegorzewski KJ, Barash S, et al. An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis[J]. Nat Biotechnol, 2003, 21(3):294-301.
|
48 |
Song JJ, Celeste AJ, Kong FM, et al. Bone morphogenetic protein-9 binds to liver cells and stimulates proliferation[J]. Endocrinology, 1995, 136(10):4293-4297.
|
49 |
Herrera B, van Dinther M, Ten Dijke P, et al. Autocrine bone morphogenetic protein-9 signals through activin receptor-like kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation[J]. Cancer Res, 2009, 69(24):9254-9262.
|
50 |
Mackenzie R, Kommoss S, Winterhoff BJ, et al. Targeted deep sequencing of mucinous ovarian tumors reveals multiple overlapping RAS-pathway activating mutations in borderline and cancerous neoplasms[J]. BMC Cancer, 2015, 15:415.
|
51 |
乔友林,赵宇倩.宫颈癌的流行病学现状和预防[J/CD].中华妇幼临床医学杂志:电子版,2015,11(2):141-147.
|
52 |
李雪,孔为民,韩超,等.首都医科大学附属北京妇产医院1992-2011年间宫颈癌发病趋势分析[J/CD].中华妇幼临床医学杂志:电子版,2013,9(3):310-314.
|
53 |
Qiao P, Li G, Bi W, et al. microRNA-34a inhibits epithelial mesenchymal transition in human cholangiocarcinoma by targeting Smad4 through transforming growth factor-beta/Smad pathway[J]. BMC Cancer, 2015, 15:469.
|
54 |
Oshima M, Okano K, Muraki S, et al. Immunohistochemically detected expression of 3 major genes (CDKN2A/p16, TP53, and SMAD4/DPC4) strongly predicts survival in patients with resectable pancreatic cancer[J]. Ann Surg, 2013, 258(2):336-346.
|
55 |
Taniguchi C, Maitra A. It's a SMAD/SMAD world[J]. Cell, 2015, 161(6):1245-1246.
|
56 |
Yamada S, Fujii T, Shimoyama Y, et al. SMAD4 expression predicts local spread and treatment failure in resected pancreatic cancer[J]. Pancreas, 2015, 44(4):660-664.
|
57 |
Xie W, Mertens JC, Reiss DJ, et al. Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study[J]. Cancer Res, 2002, 62(2):497-505.
|
58 |
Liu NN, Xi Y, Callaghan MU, et al. SMAD4 is a potential prognostic marker in human breast carcinomas[J]. Tumour Biol, 2014, 35(1):641-650.
|
59 |
Isaksson-Mettävainio M, Palmqvist R, Dahlin AM, et al. High SMAD4 levels appear in microsatellite instability and hypermethylated colon cancers, and indicate a better prognosis[J]. Int J Cancer, 2012, 131(4):779-788.
|
60 |
Alazzouzi H, Alhopuro P, Salovaara R, et al. SMAD4 as a prognostic marker in colorectal cancer[J]. Clin Cancer Res, 2005, 11(7):2606-2611.
|
61 |
Voorneveld PW, Jacobs RJ, Kodach LL, et al. A meta-analysis of SMAD4 immunohistochemistry as a prognostic marker in colorectal cancer[J]. Transl Oncol, 2015, 8(1):18-24.
|
62 |
Du Y, Zhou X, Huang Z, et al. Meta-analysis of the prognostic value of smad4 immunohistochemistry in various cancers[J]. PLoS One, 2014, 9(10):e110182.
|