| [1] |
Akalın A, Taskiran EZ, Şimşek-Kiper P, et al. Spondyloepimetaphyseal dysplasia EXTL3-deficient type: long-term follow-up and review of the literature [J]. Am J Med Genet A, 2021, 185(10): 3104-3110. DOI: 10.1002/ajmg.a.62378.
|
| [2] |
Volpi S, Yamazaki Y, Brauer PM, et al. EXTL3 mutations cause skeletal dysplasia, immune deficiency, and developmental delay [J]. J Exp Med, 2017, 214(3): 623-637. DOI: 10.1084/jem.20161525.
|
| [3] |
Bajaj S, Satoskar P, Nair A, et al. An ultra-rare case of immunoskeletal dysplasia with neurodevelopmental abnormalities in an Indian patient with homozygous c.953C>T variant in EXTL3 gene: a case report [J]. BMC Pediatr, 2022, 22(1): 78. DOI: 10.1186/s12887-022-03143-2.
|
| [4] |
Oud MM, Tuijnenburg P, Hempel M, et al. Mutations in EXTL3 cause neuro-immuno-skeletal dysplasia syndrome [J]. Am J Hum Genet, 2017, 100(2): 281-296. DOI: 10.1016/j.ajhg.2017.01.013.
|
| [5] |
Guo L, Elcioglu NH, Mizumoto S, et al. Identification of biallelic EXTL3 mutations in a novel type of spondylo-epi-metaphyseal dysplasia [J]. J Hum Genet, 2017, 62(8): 797-801. DOI: 10.1038/jhg.2017.38.
|
| [6] |
Demir E, Adım F, Döǧen ME, et al. EXTL3-associated immunoskeletal dysplasia with neurodevelopmental abnormalities: a lethal phenotype [J]. Pediatr Allergy Immunol Pulmonol, 2023, 36(4): 147-149. DOI: 10.1089/ped.2023.0079.
|
| [7] |
Tian X, Zhang X, Zhang Q, et al. Immune skeletal dysplasia with neurodevelopmental abnormalities caused by a novel variant of EXTL3 gene in a Chinese family [J]. Mol Genet Genomic Med, 2024, 12(1): e2308. DOI: 10.1002/mgg3.2308.
|
| [8] |
|
| [9] |
Mehta SS, Bosticardo M, Notarangelo LD, et al. Novel EXTL3 variants causing neuro-immuno-skeletal dysplasia [J]. J Clin Immunol, 2024, 44(8): 188. DOI: 10.1007/s10875-024-01784-9.
|
| [10] |
Busse-Wicher M, Wicher KB, Kusche-Gullberg M. The exostosin family: proteins with many functions [J]. Matrix Biol, 2014, 35: 25-33. DOI: 10.1016/j.matbio.2013.10.001.
|
| [11] |
Norton WH, Ledin J, Grandel H, et al. HSPG synthesis by zebrafish Ext2 and Extl3 is required for Fgf10 signalling during limb development [J]. Development, 2005, 132(22): 4963-4973. DOI: 10.1242/dev.02084.
|
| [12] |
Yamada S. Specific functions of exostosin-like 3 ( EXTL3) gene products [J]. Cell Mol Biol Lett, 2020, 25:39. DOI: 10.1186/s11658-020-00231-y.
|
| [13] |
Lai Y, Li D, Li C, et al. The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury [J]. Immunity, 2012, 37(1): 74-84. DOI: 10.1016/j.immuni.2012.04.010.
|
| [14] |
Acquatella-Tran Van Ba I, Marchal S, François F, et al. Regenerating islet-derived 1α (Reg-1α) protein is new neuronal secreted factor that stimulates neurite outgrowth via exostosin Tumor-like 3 (EXTL3) receptor [J]. J Biol Chem, 2012, 287(7): 4726-4739. DOI: 10.1074/jbc.M111.260349.
|
| [15] |
Wrenshall LE, Platt JL, Stevens ET, et al. Propagation and control of T cell responses by heparan sulfate-bound IL-2 [J]. J Immunol, 2003, 170(11): 5470-5474. DOI: 10.4049/jimmunol.170.11.5470.
|
| [16] |
Milne CD, Corfe SA, Paige CJ. Heparan sulfate and heparin enhance ERK phosphorylation and mediate preBCR-dependent events during B lymphopoiesis [J]. J Immunol, 2008, 180(5): 2839-2847. DOI: 10.4049/jimmunol.180.5.2839.
|
| [17] |
Shimokawa K, Kimura-Yoshida C, Nagai N, et al. Cell surface heparan sulfate chains regulate local reception of FGF signaling in the mouse embryo [J]. Dev Cell, 2011, 21(2): 257-272. DOI: 10.1016/j.devcel.2011.06.027.
|
| [18] |
Fuerer C, Habib SJ, Nusse R. A study on the interactions between heparan sulfate proteoglycans and Wnt proteins [J]. Dev Dyn, 2010, 239(1): 184-190. DOI: 10.1002/dvdy.22067.
|
| [19] |
Holmborn K, Habicher J, Kasza Z, et al. On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis [J]. J Biol Chem, 2012, 287(40): 33905-33916. DOI: 10.1074/jbc.M112.401646.
|