切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2025, Vol. 21 ›› Issue (04) : 411 -419. doi: 10.3877/cma.j.issn.1673-5250.2025.04.006

论著

MRI磁化准备快速采集梯度回波序列对儿童脑发育的定量评估作用
刘赛, 廖怡, 贾凤林, 李学胜, 马鑫茂, 李珮, 宁刚, 曲海波()   
  1. 四川大学华西第二医院放射科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2024-10-08 修回日期:2025-07-10 出版日期:2025-08-01
  • 通信作者: 曲海波

Quantitative evaluation of brain development in children using MRI magnetization prepared rapid acquisition gradient echo sequences

Sai Liu, Yi Liao, Fenglin Jia, Xuesheng Li, Xinmao Ma, Pei Li, Gang Ning, Haibo Qu()   

  1. Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2024-10-08 Revised:2025-07-10 Published:2025-08-01
  • Corresponding author: Haibo Qu
  • Supported by:
    National Key R&D Program(2018YFC1002202)
引用本文:

刘赛, 廖怡, 贾凤林, 李学胜, 马鑫茂, 李珮, 宁刚, 曲海波. MRI磁化准备快速采集梯度回波序列对儿童脑发育的定量评估作用[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(04): 411-419.

Sai Liu, Yi Liao, Fenglin Jia, Xuesheng Li, Xinmao Ma, Pei Li, Gang Ning, Haibo Qu. Quantitative evaluation of brain development in children using MRI magnetization prepared rapid acquisition gradient echo sequences[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2025, 21(04): 411-419.

目的

探讨MRI磁化准备快速采集梯度回波(MP2RAGE)序列,对儿童不同脑区脑组织T1值的定量评估作用,以及儿童不同脑区脑组织T1值随着其性别、年龄的变化特点。

方法

选择2021年5月至2023年6月于四川大学华西第二医院进行颅脑MRI检查,并且检查结果未见异常的71例3~18岁儿童为研究对象。其中,男性37例,女性34例,中位年龄为8.7岁(5.1,11.7岁)。采用3.0T MRI扫描仪对所有受试儿进行颅脑MP2RAGE序列检查,分别测量其小脑,小脑中脚,脑桥腹侧、背侧,额叶白质,胼胝体膝部、压部,内囊前肢、后肢,颞叶白质,丘脑,尾状核头,枕叶白质,顶叶白质,中央前、后回白质等15个脑区脑组织的T1值。采用Spearman秩相关性分析方法,对受试儿各脑区脑组织T1值与其年龄的相关性进行统计学分析。采用成组t检验或Wilcoxon秩和检验,对不同性别受试儿各脑区脑组织T1值进行统计学比较。本研究遵循的程序符合2013年修订的《世界医学协会赫尔辛基宣言》要求,并与受试儿监护人签署临床研究知情同意书。

结果

①这71例受试儿各脑区脑组织T1值与其年龄的相关性分析结果显示,脑桥背侧、额叶白质、颞叶白质、顶叶白质及尾状核头的T1值与其年龄,均呈较强负相关关系(rs=-0.793~-0.610,P<0.001),丘脑、枕叶白质、内囊前肢、胼胝体膝部、胼胝体压部及中央前、后回白质的T1值与其年龄,均呈中等负相关关系(rs=-0.588~-0.413,P<0.001),小脑、小脑中脚及内囊后肢的T1值与其年龄,均呈弱负相关关系(rs=-0.316~-0.203,P<0.05),而脑桥腹侧T1值与其年龄无相关关系(rs=-0.051,P>0.05)。②男性受试儿小脑中脚、脑桥背侧和尾状核头的T1值,均显著高于女性,并且差异均有统计学意义(t=2.43、2.66、2.44,P=0.018、0.010、0.017)。③这71例受试儿颅脑各脑区脑组织T1值最高的3个脑区脑组织依次为:尾状核头(1 333.8±49.4)ms、丘脑(1 067.4±59.1)ms、脑桥背侧(1 003.2±38.4)ms,T1值最低的3个脑区脑组织依次为:胼胝体压部(777.4±25.1)ms、胼胝体膝部(783.0±35.9)ms和内囊后肢(834.5±38.0) ms。

结论

MRI MP2RAGE序列,可无创定量评估儿童脑发育过程中不同脑组织的变化趋势,儿童脑组织发育过程中大部分脑区脑组织的T1值随着年龄增长而降低,并且不同性别及不同脑区脑组织T1值亦各异。

Objective

To explore the roles of quantitative evaluation of T1 values in tissues of different brain regions of children using the magnetization prepared rapid acquisition gradient echo (MP2RAGE) sequence of MRI, and the characteristics of T1 values in tissues of different brain regions of children with different gender and age.

Methods

A total of 71 children aged 3 to 18 years who underwent cranial MRI at West China Second University Hospital, Sichuan University, from May 2021 to June 2023, with no abnormal findings on imaging, were enrolled in this study. Among them, 37 were boys and 34 were girls, with a median age of 8.7 years (5.1, 11.7 years). All children underwent cranial MP2RAGE sequence scanning using a 3.0T magnetic resonance scanner, and the T1 values of tissues in 15 brain regions were measured, including the cerebellum, middle cerebellar peduncle, ventral and dorsal pons, frontal lobe white matter, genu and splenium of the corpus callosum, anterior and posterior limbs of the internal capsule, temporal lobe white matter, thalamus, caudate nucleus head, occipital lobe white matter, parietal lobe white matter, and precentral and postcentral gyrus white matter. Spearman rank correlation analysis was used to analyze the correlation between T1 values and age in tissues of each brain region. T1 values between different genders were statistically compared using independent-samples t test or Wilcoxon rank sum test. The procedures followed in this study complied with the requirements of the Helsinki Declaration of the World Medical Association revised in 2013, and informed consent form for clinical research was signed with the guardian of each child.

Results

①The correlation analysis of T1 values of tissues in various brain regions with age in 71 children showed that the T1 values of the dorsal pons, frontal white matter, temporal white matter, parietal white matter, and head of caudate nucleus were all strongly negatively correlated with age (rs=-0.793 to -0.610, P<0.001), while the T1 values of the thalamus, occipital white matter, anterior limb of the internal capsule, genu and splenium of the corpus callosum, and anterior and posterior central gyrus were all moderately negatively correlated with age (rs=-0.588 to -0.413, P<0.001). The T1 values of the cerebellum, middle foot of the cerebellum, and posterior limb of the internal capsule were weakly negatively correlated with age (rs=-0.316 to -0.203, P<0.05), and there was no statistically significant correlation between the T1 value of the ventral pons and age (rs=-0.051, P>0.05). ②The T1 values of middle foot of the cerebellum, pons dorsal region, and head of the caudate nucleus in male children were significantly higher than those in female children (t=2.43, 2.66, 2.44; P=0.018, 0.010, 0.017). ③Among the 71 children, the tissues of three regions with the highest T1 values were the caudate nucleus head (1 333.8±49.4) ms, thalamus (1 067.4±59.1) ms, and dorsal pons (1 003.2±38.4) ms, respectively. The tissues of three regions with the lowest T1 values were the splenium of the corpus callosum (777.4±25.1) ms, the genu of the corpus callosum (783.0±35.9) ms, and the posterior limb of the internal capsule (834.5±38.0) ms.

Conclusions

MRI MP2RAGE can quantitatively and non-invasively reflect the changing trend of brain tissue during the development of children. T1 values of tissues in most brain regions decrease with age during the development of children′s brain, and there are also differences between different genders and different brain regions tissues.

图1 本研究1例受试儿(男性,10岁)颅脑各脑区脑组织T1值测量ROI示意图(图1A:1、2脑区;图1B:3、4脑区;图1C:5脑区;图1D:6~13脑区;图1E:14脑区;图1F:15脑区)注:1~15分别指小脑、小脑中脚、脑桥腹侧、脑桥背侧、颞叶白质、额叶白质、胼胝体膝部、尾状核头、内囊前肢、内囊后肢、丘脑、胼胝体压部、枕叶白质、顶叶白质及中央前、后回白质。ROI为感兴趣区
表1 本研究71例受试儿左、右脑不同脑区的脑组织T1值比较(ms)
图2 本研究71例受试儿颅脑各脑区脑组织T1值与其年龄的相关性分析(图2A:小脑区脑组织T1值与受试儿年龄的相关性分析;图2B:小脑中脚区脑组织T1值与受试儿年龄的相关性分析;图2C:脑桥腹侧区脑组织T1值与受试儿年龄的相关性分析;图2D:脑桥背侧区脑组织T1值与受试儿年龄的相关性分析;图2E:额叶白质区脑组织T1值与受试儿年龄的相关性分析;图2F:胼胝体膝部区脑组织T1值与受试儿年龄的相关性分析;图2G:内囊前肢区脑组织T1值与受试儿年龄的相关性分析;图2H:内囊后肢区脑组织T1值与受试儿年龄的相关性分析;图2I:胼胝体压部区脑组织T1值与受试儿年龄的相关性分析;图2J:额叶白质区脑组织T1值与受试儿年龄的相关性分析;图2K:尾状核头区脑组织T1值与受试儿年龄的相关性分析;图2L:丘脑区脑组织T1值与受试儿年龄的相关性分析;图2M:枕叶白质区脑组织T1值与受试儿年龄的相关性分析;图2N:顶叶白质区脑组织T1值与受试儿年龄的相关性分析;图2O:中央前、后回白质区脑组织T1值与受试儿年龄的相关性分析)
表2 男、女性受试儿颅脑各脑区脑组织T1值比较(ms)
图3 本研究71例受试儿颅脑15个脑区脑组织T1值的分布图
表3 本研究71例受试儿不同脑区脑组织T1值两两比较结果
[1]
Tabari A, Conklin J, Figueiro Longo MG, et al. Comparison of ultrafast wave-controlled aliasing in parallel imaging (CAIPI) magnetization-prepared rapid acquisition gradient echo (MP-RAGE) and standard MP-RAGE in non-sedated children: initial clinical experience[J]. Pediatr Radiol, 2021, 51(11): 2009-2017. DOI: 10.1007/s00247-021-05117-5.
[2]
Romascano D, Piredda GF, Caneschi S, et al. Normative volumes and relaxation times at 3T during brain development[J]. Sci Data, 2024, 11(1): 429. DOI: 10.1038/s41597-024-03267-3.
[3]
Does MD. Inferring brain tissue composition and microstructure via MR relaxometry[J]. Neuroimage, 2018, 182: 136-148. DOI: 10.1016/j.neuroimage.2017.12.087.
[4]
Dubois J, Alison M, Counsell SJ, et al. MRI of the neonatal brain: a review of methodological challenges and neuroscientific advances[J]. J Magn Reson Imaging, 2021, 53(5): 1318-1343. DOI: 10.1002/jmri.27192.
[5]
Filimonova E, Amelina E, Sazonova A, et al. Assessment of normal myelination in infants and young children using the T1w/T2w mapping technique[J]. Front Neurosci, 2023, 17: 1102691. DOI: 10.3389/fnins.2023.1102691.
[6]
Kelley KW, Paşca SP. Human brain organogenesis: toward a cellular understanding of development and disease[J]. Cell, 2022, 185(1): 42-61. DOI: 10.1016/j.cell.2021.10.003.
[7]
Conte S, Zimmerman D, Richards JE. White matter trajectories over the lifespan[J]. PLoS One, 2024, 19(5): 1. DOI: 10.1371/journal.pone.0301520.
[8]
Hutchinson G, Thotland J, Pisharady PK, et al. T1 relaxation and axon fibre configuration in human white matter[J]. NMR Biomed, 2024, 37(12): e5234. DOI: 10.1002/nbm.5234.
[9]
Droby A, Thaler A, Giladi N, et al. Whole brain and deep gray matter structure segmentation: quantitative comparison between MPRAGE and MP2RAGE sequences[J]. PLoS One, 2021, 16(8): e0254597. DOI: 10.1371/journal.pone.0254597.
[10]
Morel B, Piredda GF, Cottier JP, et al. Normal volumetric and T1 relaxation time values at 1.5 T in segmented pediatric brain MRI using a MP2RAGE acquisition[J]. Eur Radiol, 2021, 31(3): 1505-1516. DOI: 10.1007/s00330-020-07194-w.
[11]
Ho CY, Persohn S, Sankar M, et al. Development of myelin growth charts of the white matter using T1 relaxometry[J]. AJNR Am J Neuroradiol, 2024, 45(9): 1335-1345. DOI: 10.3174/ajnr.A8306.
[12]
Sotardi S, Gollub RL, Bates SV, et al. Voxelwise and regional brain apparent diffusion coefficient changes on MRI from birth to 6 years of age[J]. Radiology, 2021, 298(2): 415-424. DOI: 10.1148/radiol.2020202279.
[13]
Stüber C, Morawski M, Schäfer A, et al. Myelin and iron concentration in the human brain: a quantitative study of MRI contrast[J]. Neuroimage, 2014, 93 Pt 1: 95-106. DOI: 10.1016/j.neuroimage.2014.02.026.
[14]
Eminian S, Hajdu SD, Meuli RA, et al. Rapid high resolution T1 mapping as a marker of brain development: normative ranges in key regions of interest[J]. PLoS One, 2018, 13(6): e0198250. DOI: 10.1371/journal.pone.0198250.
[15]
Paus T, Zijdenbos A, Worsley K, et al. Structural maturation of neural pathways in children and adolescents: in vivo study[J]. Science, 1999, 283(5409): 1908-1911. DOI: 10.1126/science.283.5409.1908.
[16]
Lynch KM, Cabeen RP, Toga AW, et al. Magnitude and timing of major white matter tract maturation from infancy through adolescence with NODDI[J]. Neuroimage, 2020, 212: 116672. DOI: 10.1016/j.neuroimage.2020.116672.
[17]
Wang S, Ledig C, Hajnal JV, et al. Quantitative assessment of myelination patterns in preterm neonates using T2-weighted MRI[J]. Sci Rep, 2019, 9(1): 12938. DOI: 10.1038/s41598-019-49350-3.
[18]
Sagi R, Taylor JSH, Neophytou K, et al. White matter associations with spelling performance[J]. Brain Struct Funct, 2024, 229(9): 2115-2135. DOI: 10.1007/s00429-024-02775-7.
[19]
Miao X, Qi M, Cui S, et al. Assessing sequence and relationship of regional maturation in corpus callosum and internal capsule in preterm and term newborns by diffusion-tensor imaging[J]. Int J Dev Neurosci, 2014, 34: 42-47. DOI: 10.1016/j.ijdevneu.2014.01.004.
[20]
Romero JE, Coupe P, Lanuza E, et al. Alzheimer′s disease neuroimaging initiative. Toward a unified analysis of cerebellum maturation and aging across the entire lifespan: a MRI analysis[J]. Hum Brain Mapp, 2021, 42(5): 1287-1303. DOI: 10.1002/hbm.25293.
[21]
Oldham S, Ball G, Fornito A. Early and late development of hub connectivity in the human brain[J]. Curr Opin Psychol, 2022, 44: 321-329. DOI: 10.1016/j.copsyc.2021.10.010.
[22]
Flood TF, Bhatt PR, Jensen A, et al. Age-dependent signal intensity changes in the structurally normal pediatric brain on unenhanced T1-weighted MR imaging[J]. AJNR Am J Neuroradiol, 2019, 40(11): 1824-1828. DOI: 10.3174/ajnr.A6254.
[23]
Paus T. Sex differences in the human brain: a developmental perspective[J]. Prog Brain Res, 2010, 186: 13-28. DOI: 10.1016/B978-0-444-53630-3.00002-6.
[24]
Ketcherside A, Baine J, Filbey F. Sex effects of marijuana on brain structure and function[J]. Curr Addict Rep, 2016, 3: 323-331. DOI: 10.1007/s40429-016-0114-y.
[25]
马瑞,郑青慧,王春丽,等. 4~6岁儿童动作技能与认知自我调节的相关性[J]. 上海体育大学学报2020, 44(12): 60-68. DOI: 10.16099/j.sus.2020.12.007.
[26]
Goodway JD, Gallahue DL, Ozmun JC. Understanding motor development: infants, children, adolescents[M]. New York: McGraw-Hill, 2012: 169.
[27]
Romascano D, Piredda GF, Caneschi S, et al. Normative volumes and relaxation times at 3T during brain development[J]. Sci Data, 2024, 11(1): 429. DOI: 10.1038/s41597-024-03267-3.
[28]
Morel B, Piredda GF, Cottier JP, et al. Normal volumetric and T1 relaxation time values at 1.5 T in segmented pediatric brain MRI using a MP2RAGE acquisition[J]. Eur Radiol, 2021, 31(3): 1505-1516. DOI: 10.1007/s00330-020-07194-w.
[1] 刘晴晴, 俞劲, 徐玮泽, 张志伟, 潘晓华, 舒强, 叶菁菁. OBICnet图像分类模型在小儿先天性心脏病超声筛查中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 754-760.
[2] 刘芳, 张展, 刘慧, 方玲, 王爱珍, 丁豆豆, 崔苗, 刘百灵, 王洁. 儿童原发性心脏肿瘤超声表现及预后的单中心回顾分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 470-476.
[3] 杨秀珍, 李丽, 徐哲明, 王晶晶, 叶菁菁. 基于排泄性尿路超声造影诊断肾内反流及与DMSA 显像的相关性分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 348-353.
[4] 贾亚南, 冯雪园, 尚迎晓, 屠英暄, 刘洋, 乔海芝, 马宁. 儿童乳腺颗粒细胞瘤一例[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(05): 308-310.
[5] 何淳诺, 田志敏, 张浩强, 李焕玺, 庄凯鹏, 乔永杰, 周胜虎, 甄平. Salter骨盆截骨联合股骨近端截骨治疗儿童髋关节发育不良[J/OL]. 中华关节外科杂志(电子版), 2025, 19(04): 391-401.
[6] 中国妇幼保健协会儿童变态反应专业委员会, 《儿童皮肤创面诊疗专家共识(2025版)》编写组. 儿童皮肤创面诊疗专家共识(2025版)[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 374-383.
[7] 王明媚, 李勇. 肾盂癌的影像诊断及进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 412-417.
[8] 谢起根, 苏诚, 徐哲, 李作青. 改良Byars分期尿道成形术与传统术式治疗重型尿道下裂的队列研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 429-435.
[9] 热夏提·热合曼, 阿尔孜古丽·喀喀尔, 阿依姆妮萨·阿卜杜热合曼, 阿布力米提·阿套拉, 库尔班江·阿布力克木, 苏力坦·乌斯曼, 安信, 加素尔·巴吐尔. 血友病患儿包皮环切术的安全性及围手术期处理[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 436-440.
[10] 李闻天, 李忠慧, 翁云峰, 李儆修, 刘永祥, 徐婧, 贺青卿, 周鹏. 达芬奇机器人辅助儿童甲状旁腺切除术1例[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(04): 244-246.
[11] 鲁莽, 马晓璐, 沈浮, 王颢, 邵成伟, 张卫, 陆建平, 陆海迪. 基于磁共振的深度学习重建方法在直肠癌术前评估中的应用研究[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(05): 445-456.
[12] 金渊媛, 刘丽美, 黄妍, 张军. 高频及低频重复经颅磁刺激对急性一氧化碳中毒迟发性脑病的疗效[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 199-207.
[13] 何源青, 郭雷明, 冯佩, 马春宁, 岳欣. 钆塞酸二钠增强MRI多模态参数与原发性肝癌患者病情程度的相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(04): 317-325.
[14] 姜彤彤, 戎萍, 马融, 付乾芳, 张亚同, 赵书艺, 刘晖, 马榕, 李悦, 李瑞本. 抽动障碍儿童呼吸道感染后的临床特征及抽动症状加重的危险因素分析[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 426-432.
[15] 赵文锋, 贾建业, 张弋, 夏溟, 董洋, 韩从辉, 金思彤, 李建波, 贾志刚, 刘鹏飞, 许长宝, 程跃. 体外冲击波碎石术治疗儿童上尿路结石的现况调查[J/OL]. 中华临床医师杂志(电子版), 2025, 19(04): 243-247.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?