切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2025, Vol. 21 ›› Issue (03) : 296 -303. doi: 10.3877/cma.j.issn.1673-5250.2025.03.007

所属专题: 文献

论著

人工智能辅助盆底超声诊断膀胱膨出的效能
董梦1, 王鑫璐1,(), 朱光宇2, 耿鑫2, 杨华1   
  1. 1中国医科大学附属盛京医院超声科,沈阳 110000
    2东北大学医学与生物信息工程学院,沈阳 110819
  • 收稿日期:2025-04-14 修回日期:2025-05-10 出版日期:2025-06-01
  • 通信作者: 王鑫璐

Efficacy of artificial intelligence-assisted pelvic floor ultrasound in diagnosing cystocele

Meng Dong1, Xinlu Wang1,(), Guangyu Zhu2, Xin Geng2, Hua Yang1   

  1. 1Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
    2School of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, Liaoning Province, China
  • Received:2025-04-14 Revised:2025-05-10 Published:2025-06-01
  • Corresponding author: Xinlu Wang
  • Supported by:
    Project of Department of Science & Technology of Liaoning province(2023JH2/20200052)
引用本文:

董梦, 王鑫璐, 朱光宇, 耿鑫, 杨华. 人工智能辅助盆底超声诊断膀胱膨出的效能[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(03): 296-303.

Meng Dong, Xinlu Wang, Guangyu Zhu, Xin Geng, Hua Yang. Efficacy of artificial intelligence-assisted pelvic floor ultrasound in diagnosing cystocele[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2025, 21(03): 296-303.

目的

探讨基于全段尿道动态参数人工智能(AI)膀胱膨出自动识别模型,在盆底超声检查中对膀胱膨出的辅助诊断价值。

方法

选择2024年7至12月中国医科大学附属盛京医院门诊被盆底超声诊断为膀胱膨出的103例与前盆腔结构正常者的97例,共计200例受试者为研究对象。将这200例受试者按照7∶3分别纳入训练集(n=140)和测试集(n=60)。训练集140例受试者中,膀胱膨出和前盆腔结构正常者分别为73、67例,测试集60例受试者中,膀胱膨出和前盆腔结构正常者均为30例。采集训练集受试者静息及最大Valsalva动作下的动态超声图像,手动勾画尿道轮廓,并提取13项尿道运动特征参数纳入训练集,构建基于支持向量机(SVM)及随机森林(RF)模型,采用5折交叉验证得到的5个权重,对测试集受试者进行测试,并分别评估SVM和RF模型,对膀胱膨出的诊断效能。本研究遵循的程序符合中国医科大学附属盛京医院医学伦理委员会要求,获得其批准(伦理审批号:2024PS1218K),并且与所有受试者签署临床研究知情同意书。

结果

①训练集和测试集受试者年龄、人体质量指数(BMI)、身高、体重、孕次、产次及民族、职业构成比等比较,差异均无统计学意义(P>0.05)。②测试集受试者中,SVM模型的准确率、精确度、召回率、F1分数及受试者工作特征的曲线下面积(ROC-AUC)分别为0.783、0.718、0.933、0.811、0.893,均优于RF模型的0.733、0.659、0.966、0.783、0.876。其中,SVM模型第1折权重文件表现最佳(ROC-AUC为0.904)。③混淆矩阵结果显示,SVM和RF模型对膀胱膨出的正确识别率分别为93.3%(28/30),96.7%(29/30);SVM和RF模型对前盆腔结构正常的正确识别率分别为63.3%(19/30)和50.0%(15/30)。

结论

本研究基于全段尿道动态参数的AI自动识别模型,对受试者膀胱膨出具有良好的诊断效能,可为传统盆底超声检查提供客观的辅助决策工具。未来在膀胱膨出患者的早期筛查及术后随访中具有广泛应用前景,但是仍需扩大样本量的多中心临床试验进行验证,通过优化算法推动上述模型的临床转化。

Objective

To evaluate the auxiliary diagnostic value of an artificial intelligence (AI)-based automatic recognition model for cystocele in pelvic floor ultrasound examination.

Methods

A total of 200 female outpatients who underwent pelvic floor ultrasound examination at Shengjing Hospital of China Medical University between July and December 2024 were included. Among them, 103 cases were diagnosed with cystocele and 97 had normal anterior pelvic compartment structures. The subjects were randomly divided into a training set (n=140) and a testing set (n=60) in a 7∶3 ratio. In the training set, 73 had cystocele and 67 were normal; in the testing set, both groups included 30 cases. Dynamic pelvic floor ultrasound images at rest and during maximal Valsalva maneuver were collected. Urethral contours were manually delineated, and 13 urethral mobility parameters were extracted. Based on these features, support vector machine (SVM) and random forest (RF) models were trained using five-fold cross-validation, and the resulting five sets of weights were used to evaluate diagnostic performance in the testing set. The study was approved by the Ethics Committee of Shengjing Hospital, China Medical University (Approval No. 2024PS1218K), and all participants provided written informed consent.

Results

①There were no statistically significant differences in age, body mass index (BMI), height, weight, gravidity, parity, ethnicity, or occupational composition between the training and testing sets (P>0.05). ②In the testing set, the SVM model demonstrated an accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (ROC-AUC) of 0.783, 0.718, 0.933, 0.811, and 0.893, respectively, all superior to those of the RF model (0.733, 0.659, 0.966, 0.783, and 0.876). Among the five SVM model, the first fold performed best with a ROC-AUC of 0.904. ③Confusion matrix analysis showed that the correct identification rates of cystocele by the SVM and RF models were 93.3% (28/30) and 96.7% (29/30), respectively; for normal anterior compartment structures, the rates were 63.3% (19/30) and 50.0% (15/30), respectively.

Conclusions

The AI-based automatic recognition model using full-length urethral dynamic parameters demonstrates favorable diagnostic performance in identifying cystocele and may serve as an objective auxiliary tool to conventional pelvic floor ultrasound. It holds promise for early screening, subtype classification, and postoperative follow-up of cystocele. However, further studies with larger sample sizes and multi-center validation are required to optimize the algorithm and facilitate clinical translation.

图1 6例受试者最大Vasalva动作时盆底超声声像图(图1A~1C:年龄分别为45、54和58岁前盆腔结构正常受试者盆底超声声像图;图1D~1F:年龄分别为45、54和58岁膀胱膨出患者超声声像图)注:U为尿道,B为膀胱
表1 训练集和测试集受试者一般资料比较
图2 模型对测试集60例受试者膀胱膨出辅助诊断的不同权重模型的ROC曲线(图1A:SVM模型;图1B:RF模型)注:ROC曲线为受试者工作特征曲线,SVM为支持向量机,RF为随机森林
表2 SVM模型基于膀胱膨出超声图像特征对60例测试集受试者的五折交叉验证分类性能评估结果
表3 RF模型基于膀胱膨出超声图像特征60例测试集受试者的五折交叉验证分类性能评估结果
图3 采用混淆矩阵对SVM和RF模型对60例测试集受试者的分析结果图(图3A:SVM模型在测试集中的混淆矩阵图;图3B:RF模型在测试集中的混淆矩阵图)注:SVM为支持向量机,RF为随机森林
[1]
Baud D, Sichitiu J, Lombardi V, et al. Comparison of pelvic floor dysfunction 6 years after uncomplicated vaginal versus elective cesarean deliveries: a cross-sectional study [J]. Sci Rep, 2020, 10(1): 21509. DOI: 10.1038/s41598-020-78625-3.
[2]
中华医学会超声医学分会妇产超声学组。盆底超声检查中国专家共识(2022版)[J].中华超声影像学杂志202231(3):185-191. DOI: 10.3760/cma.j.cn131148-20211231-00983.
[3]
张新玲.实用盆底超声诊断学[M]. 北京:人民卫生出版社,2019,47-48.
[4]
DeLancey JO. Structural support of the urethra as it relates to stress urinary incontinence: the hammock hypothesis [J]. Am J Obstet Gynecol, 1994, 170(6): 1713-1720; discussion 1720-1723. DOI: 10.1016/s0002-9378(94)70346-9.
[5]
Pirpiris A, Shek KL, Dietz HP. Urethral mobility and urinary incontinence [J]. Ultrasound Obstet Gynecol, 2010, 36(4): 507-511. DOI: 10.1002/uog.7658.
[6]
肖汀,黄伟俊,曹韵清,等. 超声观察膀胱膨出在女性压力性尿失禁诊断中的应用 [J]. 中国超声医学杂志201834(9):829-831.
[7]
李晓,李少春,万泛旋,等. 盆底超声在初产妇与经产妇膀胱膨出对比研究中的应用[J].中国临床医学影像杂志2023, 34(11): 803-806. DOI: 10.12117/jccmi.2023.11.011.
[8]
Kuang M, Hu HT, Li W, et al. Articles that use artificial intelligence for ultrasound: a reader′s guide [J]. Front Oncol, 202111: 631813. DOI: 10.3389/fonc.2021.631813.
[9]
Yin R, Jiang M, Lv WZ, et al. Study processes and applications of ultrasomics in precision medicine [J]. Front Oncol, 2020, 10: 1736. DOI: 10.3389/fonc.2020.01736.
[10]
郑兰英,吴羽,辜莉,等. 经会阴盆底超声智能识别及自动测量软件量化评价膀胱后壁脱垂的初步研究[J].中国超声医学杂志2019, 34 (6): 547-550. DOI: 10.3969/j.issn.1002-0101.2019.06.022.
[11]
王慧芳,巫敏,季兴,等. 盆底超声智能识别及自动测量技术量化评价膀胱后壁脱垂的可行性研究[J].中华超声影像学杂志201827(10):876-880. DOI: 10.3760/cma.j.issn.1004-4477.2018.10.015.
[12]
Zhang M, Lin X, Zheng Z, et al. Artificial intelligence models derived from 2D transperineal ultrasound images in the clinical diagnosis of stress urinary incontinence [J]. Int Urogynecol J, 2022, 33(5): 1179-1185. DOI: 10.1007/s00192-021-04859-y.
[13]
叶舒瑶,罗丽娟,罗欢嘉,等. 盆底超声智能识别及自动测量软件在女性膀胱脱垂患者评估中的应用价值 [J]. 海南医学202250(14):1847-1851.
[14]
贾忠桃,张晓新,谷学影,等. 分析尿道内口开放长度与膀胱膨出程度的关系[J].中国实用医药2023, 18(4): 85-87. DOI: 10.14163/j.cnki.11-5547/r.2023.04.025.
[15]
徐净,张奥华,郑志娟,等. 尿道内口漏斗各参数诊断女性压力性尿失禁[J].中国医学影像技术2021, 37(8): 1196-1199. DOI: 10.13929/j.issn.1003-3289.2021.08.018.
[16]
赵春桃,梁峰雪,杨瑞敏,等. 三维盆底超声预测产妇发生盆腔脏器脱垂的价值及影响因素[J/OL]. 中华妇幼临床医学杂志(电子版)2022, 18(5):606-614. DOI: 10.3877/cma.j.issn.1673-5250.2022.05.016.
[17]
李秋枫,李辉丽,张汉标. 全栈式自动盆底超声测量产后膀胱膨出患者最小肛提肌裂孔平面的临床价值[J].临床超声医学杂志2023, 36(9): 742-746. DOI: 10.3969/j.issn.1008-6978.2023.09.016.
[1] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[2] 何冠南, 谭莹, 路玉欢, 蒲斌, 扬水华, 张仁铁, 陈明, 石智红, 钟晓红, 陈曦, 燕柳屹, 李胜利. 人工智能在胎儿超声心动图标准切面质量控制中的多中心应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 388-396.
[3] 陈茵, 谭莹, 谭渤瀚, 何冠南, 王磊, 温昕, 朱巧珍, 梁博诚, 李胜利. 基于YOLO V8 的胎儿脐膨出超声智能质量评估与诊断[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 305-310.
[4] 王明媚, 李勇. 肾盂癌的影像诊断及进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 412-417.
[5] 谢起根, 苏诚, 徐哲, 李作青. 改良Byars分期尿道成形术与传统术式治疗重型尿道下裂的队列研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 429-435.
[6] 詹彧鸣, 张翔, 翁山耕. 人工智能在腹膜后肿瘤精准诊疗中的研究进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(04): 371-376.
[7] 游志恒, 席红卫, 石正峰. 腹股沟疝女性患儿腹腔镜手术中筛查完全性雄激素不敏感综合征的应用分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(03): 292-295.
[8] 张艳云, 白起之, 张健伟, 郭大志, 马丹, 龚明福. 基于AI 的CT 定量用于肺结节性质及浸润程度的影像学分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 411-415.
[9] 希龙夫, 薛荣泉. 人工智能在肝胆胰肿瘤诊治中应用与进展[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 166-171.
[10] 郭寒川, 王乾宇, 吴斌. 人工智能在神经识别的研究进展及直肠癌自主神经保护的应用[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 273-276.
[11] 夏长河, 胡旭华, 郑晓红, 刘芳, 王亚轩, 王贵英. 直肠癌腹会阴联合切除(Miles)术后迟发性尿道瘘一例[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 281-283.
[12] 卓莉. 人工智能和多组学:肾脏病诊疗的新方向[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 180-180.
[13] 陈欢, 李梦涵, 于伟泓. 重视人工智能在构建眼底疾病三级诊疗筛查体系中的应用[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 129-134.
[14] 王玲洁, 王瑷萍, 李朝军, 丁跃有, 杨德业, 赵清, 崔兆强, 王京昆, 王宏宇. 心脏和血管健康技术创新研发策略专家共识(2024第一次报告,上海)[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 323-336.
[15] 马也, 瞿航, 王苇. 人工智能在脑血管病影像评价中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 211-215.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?