切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2024, Vol. 20 ›› Issue (01) : 81 -88. doi: 10.3877/cma.j.issn.1673-5250.2024.01.011

论著

肥胖症儿童血浆脑源性神经营养因子水平及其代谢异常的相关性研究
李英纳1, 李敏1, 周澳洋1, 李平1, 杨凡1,()   
  1. 1. 四川大学华西第二医院儿科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2023-11-01 修回日期:2024-01-12 出版日期:2024-02-01
  • 通信作者: 杨凡

Research on plasma brain-derived neurotrophic factor level and its correlation with metabolic abnormalities in obese children

Yingna Li1, Min Li1, Aoyang Zhou1, Ping Li1, Fan Yang1,()   

  1. 1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2023-11-01 Revised:2024-01-12 Published:2024-02-01
  • Corresponding author: Fan Yang
  • Supported by:
    Key Research and Development Program of Science and Technology of Sichuan Province(2023YFS0034); Clinical Development Fund of West China Second University Hospital, Sichuan University(KL119)
引用本文:

李英纳, 李敏, 周澳洋, 李平, 杨凡. 肥胖症儿童血浆脑源性神经营养因子水平及其代谢异常的相关性研究[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(01): 81-88.

Yingna Li, Min Li, Aoyang Zhou, Ping Li, Fan Yang. Research on plasma brain-derived neurotrophic factor level and its correlation with metabolic abnormalities in obese children[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2024, 20(01): 81-88.

目的

探讨肥胖症儿童与体重正常儿童血浆脑源性神经营养因子(BDNF)水平差异,以及其与各代谢表型及代谢指标的关系。

方法

选择2022年3月至10月于四川大学华西第二医院儿科门诊就诊的41例肥胖症儿童为研究对象,纳入肥胖症组。选择同期于本院门诊进行常规体检的11例非肥胖症健康儿童作为对照,纳入对照组。收集2组受试儿体格生长指标及血浆肌肉因子检测结果,包括BDNF、鸢尾素(irisin)、成纤维细胞生长因子(FGF)-21与白细胞介素(IL)-6及-15水平,以及临床检查结果。采用Mann-Whitney U检验,对2组受试儿血浆BDNF水平进行比较。对2组受试儿及脂、糖、嘌呤代谢异常与正常的肥胖症患儿血浆BDNF水平进行差异倍数(FC)分析,若FC>1.20或<0.83,则判断为具有显著FC。采用Spearman秩相关性分析,对2组受试儿人体质量指数(BMI)、BMI标准差评分(BMI-SDS)及血浆IL-6、irisin水平与其血浆BDNF水平进行相关性分析。本研究已获得四川大学华西第二医院医学伦理委员会的批准(审批文号:医学科研2022伦理审批第084号)。2组受试儿年龄、性别构成比、身高等一般临床资料比较,差异均无统计学意义(P>0.05)。

结果

①肥胖症组患儿的体重、BMI,均显著高于对照组(t=4.30,P<0.001;Z=-5.05,P<0.001)。②肥胖症组患儿血浆BDNF水平中位数为2 402.0 pg/mL(1 370.0 pg/mL, 3 958.5 pg/mL),显著高于对照组的1 442.0 pg/mL(933.2 pg/mL, 1 688.0 pg/mL),差异有统计学意义(Z=-2.10,P=0.036);对2组受试儿血浆BDNF水平进行FC分析结果显示,肥胖症组与对照组受试儿血浆BDNF水平具有显著FC(FC=1.42)。③脂、糖、嘌呤代谢异常的肥胖症患儿血浆BDNF水平,均分别显著高于脂、糖、嘌呤代谢正常的肥胖症患儿,均具有显著FC(FC=1.43、1.47、1.98)。④男性受试儿血浆BDNF水平低于女性受试儿,二者血浆BDNF水平具有显著FC(FC=0.69)。血清25-羟维生素D[25-(OH)-D]重度缺乏、不足受试儿血浆BDNF水平,均高于血清25-(OH)-D正常受试儿,并且均具有显著FC(FC=1.39、1.51)。血小板计数升高受试儿血浆BDNF水平高于血小板计数正常者,二者血浆BDNF水平具有显著FC(FC=2.77)。⑤2组受试儿中,其BMI、BMI-SDS及血浆IL-6、Irisin水平与其血浆BDNF水平均呈正相关(rs=0.396、0.343、0.326、0.656,P=0.004、0.013、0.018、<0.001)。

结论

BDNF可能参与肥胖症及其相关代谢损伤的发生与发展,并受到性别、血清25-(OH)-D水平、血小板计数及IL-6、irisin等肌肉因子水平等因素的影响。

Objective

To explore the differences in plasma brain-derived neurotrophic factor (BDNF) level between obese and normal children, and its relationship with different metabolic phenotypes and factors.

Methods

A total of 41 obese children who attended the pediatric outpatient clinic of West China Second University Hospital, Sichuan University from March to October 2022 were selected for the study and included in the obese group. Another 11 cases of non-obese healthy children who underwent routine physical examinations in outpatient clinic of our hospital during the control same period were selected as controls and included in the control group. Physical growth indicators, clinical examination results and plasma muscle factors [BDNF, irisin, fibroblast growth factor (FGF)-21 and interleukin (IL)-6 and -15] levels were collected from the 2 groups. Plasma BDNF levels were compared between the 2 groups by Mann-Whitney U test. Plasma BDNF levels were analysed for fold-change (FC) in children between 2 groups and children with abnormal lipid, glucose and purine metabolism versus normal children, and were judged to have a significant FC if FC was >1.20 or <0.83. Correlations of body mass index (BMI), BMI standard deviation scores (BMI-SDS), and plasma levels of IL-6 and irisin with plasma BDNF level in two groups were analyzed by Spearman′s rank correlation test. The study was approved by the Medical Ethics Committee of West China Second University Hospital, Sichuan University (Approval No. 2022-084). The baseline information was not significantly different between the obese and control group (P>0.05), including age, gender ratio, and height.

Results

①The weight and BMI of the obese group were significantly higher than those in the control group (t=4.30, P<0.001; Z=-5.05, P<0.001). ②The median plasma BDNF level of children in obese group was 2 402.0 pg/mL (1 370.0 pg/mL, 3 958.5 pg/mL), which was significantly higher than that of control group 442.0 pg/mL (933.2 pg/mL, 1 688.0 pg/mL), with a statistically significant difference (Z=-2.10, P=0.036); and there was a significant FC between BDNF levels of obese group and control group (FC=1.42). ③Plasma BDNF levels in obese children with abnormal lipid, glucose and purine metabolism were significantly higher than those in obese children with normal lipid, glucose and purine metabolism, with significant FC (FC=1.43, 1.47, 1.98). ④Plasma BDNF level was lower in male than that in female children and had significant FC (FC=0.69). The plasma BDNF levels of children with severe plasma 25-hydroxy vitamin D [25-(OH)-D] deficiency and insufficiency were higher than those of children with normal plasma 25-(OH)-D, and both had significant FC (FC=1.39, 1.51). Children with elevated platelet counts had higher plasma BDNF levels compared to those with normal platelet counts, with a significant FC (FC=2.77). ⑤In 2 groups of children, BMI, BMI-SDS, plasma IL-6 and irisin levels were positively correlated with their plasma BDNF levels (r=0.396, 0.343, 0.326, 0.656; P=0.004, 0.013, 0.018, <0.001).

Conclusions

BDNF may be involved in the occurrence and development of obesity and obesity-related metabolic disorders, and it may be influenced by factors such as gender, serum 25-(OH)-D levels, platelet counts, and levels of muscle factors such as IL-6 and irisin.

表1 肥胖症组及对照组受试儿相关临床资料比较
图1 肥胖症组与对照组受试儿血浆BDNF水平比较(图1A:2组受试儿血浆BDNF水平四分位数箱式图;图1B:2组受试儿血浆BDNF水平中位数及其FC值)注:BDNF为脑源性神经营养因子,FC为差异倍数
表2 各代谢指标异常与正常肥胖症患儿血浆BDNF水平比较及其FC分析
图2 不同性别、血清25-(OH)-D缺乏程度受试儿血浆BDNF水平差异分析(图2A:不同性别受试儿血浆BDNF水平中位数和FC值;图2B:不同血清25-(OH)-D水平受试儿血浆BDNF水平中位数和FC值)注:①、②、③分别指血清25-(OH)-D重度缺乏[血清25-(OH)-D水平<20 pg/mL]、不足[血清25-(OH)-D水平≥20~30 pg/mL]、正常[血清25-(OH)-D水平≥30 pg/mL]受试儿。25-(OH)-D为25-羟维生素D,BDNF为脑源性神经营养因子,FC为差异倍数
表3 不同性别、血清25-(OH)-D水平、血小板计数受试儿血浆BDNF水平比较及其FC分析
[1]
中华医学会儿科学分会内分泌遗传代谢学组,中华医学会儿科学分会儿童保健学组,中华医学会儿科学分会临床营养学组,等. 中国儿童肥胖诊断评估与管理专家共识 [J]. 中华儿科杂志2022, 60(6): 507-515. DOI: 10.3760/cma.j.cn112140-20220112-00043.
[2]
World Health Organization. Obesity and overweight[EB/OL]. (2020-04-01) [2023-12-20].

URL    
[3]
World Health Organization. Obesity[EB/OL]. (2023) [2023-12-20].

URL    
[4]
Juonala M, Magnussen CG, Berenson GS, et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors [J]. N Engl J Med, 2011, 365(20): 1876-85. DOI: 10.1056/NEJMoa1010112.
[5]
Fang X, Zuo J, Zhou J, et al. Childhood obesity leads to adult type 2 diabetes and coronary artery diseases: a 2-sample mendelian randomization study [J]. Medicine (Baltimore), 2019, 98(32): e16825. DOI: 10.1097/md.0000000000016825.
[6]
Mcphee PG, Singh S, Morrison KM. Childhood obesity and cardiovascular disease risk: working toward solutions [J]. Can J Cardiol, 2020, 36(9): 1352-1361. DOI: 10.1016/j.cjca.2020.06.020.
[7]
Ameroso D, Meng A, Chen S, et al. Astrocytic BDNF signaling within the ventromedial hypothalamus regulates energy homeostasis [J]. Nat Metab, 2022, 4(5): 627-643. DOI: 10.1038/s42255-022-00566-0.
[8]
Xu B, Xie X. Neurotrophic factor control of satiety and body weight [J]. Nat Rev Neurosci, 2016, 17(5): 282-292. DOI: 10.1038/nrn.2016.24.
[9]
Podyma B, Parekh K, Güler AD, et al. Metabolic homeostasis via BDNF and its receptors [J]. Trends Endocrinol Metab, 2021, 32(7): 488-499. DOI: 10.1016/j.tem.2021.04.005.
[10]
Klein AB, Williamson R, Santini MA, et al. Blood BDNF concentrations reflect brain-tissue BDNF levels across species [J]. Int J Neuropsychopharmacol, 2011, 14(3): 347-353. DOI: 10.1017/s1461145710000738.
[11]
El-Gharbawy AH, Adler-Wailes DC, Mirch MC, et al. Serum brain-derived neurotrophic factor concentrations in lean and overweight children and adolescents [J]. J Clin Endocrinol Metab, 2006, 91(9): 3548-3552. DOI: 10.1210/jc.2006-0658.
[12]
Katuri RB, Gaur GS, Sahoo JP, et al. Association of circulating brain-derived neurotrophic factor with cognition among adult obese population [J]. J Obes Metab Syndr, 2021, 30(2): 163-172. DOI: 10.7570/jomes20107.
[13]
Bacopoulou F, Angelopoulos NG, Papadodima S, et al. Serum concentrations of BDNF in adolescents with metabolic syndrome: a case-control study between normal - BMI adolescents and adolescents with obesity [J]. Eur J Pediatr, 2023, 182(10): 4595-4603. DOI: 10.1007/s00431-023-05129-3.
[14]
Sandrini L, Di Minno A, Amadio P, et al. Association between obesity and circulating brain-derived neurotrophic factor (BDNF) levels: systematic review of literature and Meta-analysis [J]. Int J Mol Sci, 2018, 19(8): 2281. DOI: 10.3390/ijms19082281.
[15]
中华人民共和国国家卫生健康委员会. WS/T 586—2018学龄儿童青少年超重与肥胖筛查[S]. 北京:国家卫生健康委员会,2018.
[16]
霍亭竹,毛萌. 儿童体格生长评价相关问题[J]. 中华儿科杂志2019, 57(2): 158-160. DOI: 10.3760/cma.j.issn.0578-1310.2019.02.021.
[17]
Muff S, Nilsen EB, O′hara RB, et al. Rewriting results sections in the language of evidence [J]. Trends Ecol Evol, 2022, 37(3): 203-210. DOI: 10.1016/j.tree.2021.10.009.
[18]
Zhang L, Chen S, Zeng X, et al. Revealing the pathogenic changes of PAH based on multiomics characteristics [J]. J Transl Med, 2019, 17(1): 231. DOI: 10.1186/s12967-019-1981-5.
[19]
Bland M. An introduction to medical statistics [M]. New York: Oxford University Press, 2015: 508-515.
[20]
Sabaratnam R, Pedersen AJT, Kristensen JM, et al. Intact regulation of muscle expression and circulating levels of myokines in response to exercise in patients with type 2 diabetes [J]. Physiol Rep, 2018, 6(12): e13723. DOI: 10.14814/phy2.13723.
[21]
Lin JC, Tsao D, Barras P, et al. Appetite enhancement and weight gain by peripheral administration of TrkB agonists in non-human primates [J]. PLoS One, 2008, 3(4): e1900. DOI: 10.1371/journal.pone.0001900.
[22]
Lommatzsch M, Zingler D, Schuhbaeck K, et al. The impact of age, weight and gender on BDNF levels in human platelets and plasma [J]. Neurobiol Aging, 2005, 26(1): 115-123. DOI: 10.1016/j.neurobiolaging.2004.03.002.
[23]
Miksza U, Bauer W, Roszkowska J, et al. The BDNF protein is associated with glucose homeostasis and food intake in carriers of common BDNF gene variants [J]. J Clin Endocrinol Metab, 2024: dgae165. DOI: 10.1210/clinem/dgae165.
[24]
Fulgenzi G, Hong Z, Tomassoni-Ardori F, et al. Novel metabolic role for BDNF in pancreatic beta-cell insulin secretion [J]. Nat Commun, 2020, 11(1): 1950. DOI: 10.1038/s41467-020-15833-5.
[25]
Cao L, Liu X, Lin EJ, et al. Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition [J]. Cell, 2010, 142(1): 52-64. DOI: 10.1016/j.cell.2010.05.029
[26]
Matsumura N, Aoyama K. Glutathione-mediated neuroprotective effect of purine derivatives [J]. Int J Mol Sci, 2023, 24(17): 13067. DOI: 10.3390/ijms241713067.
[27]
Ya BL, Liu Q, Li HF, et al. Uric acid protects against focal cerebral ischemia/reperfusion-induced oxidative stress via activating Nrf2 and Regulating neurotrophic factor expression [J]. Oxid Med Cell Longev, 2018, 2018: 6069150. DOI: 10.1155/2018/6069150.
[28]
Ciobanu AM, Petrescu C, Anghele C, et al. Severe vitamin D deficiency-a possible cause of resistance to treatment in psychiatric pathology [J]. Medicina (Kaunas), 2023, 59(12): 2056. DOI: 10.3390/medicina59122056.
[29]
Al-Amin M, Bradford D, Sullivan RKP, et al. Vitamin D deficiency is associated with reduced hippocampal volume and disrupted structural connectivity in patients with mild cognitive impairment [J]. Hum Brain Mapp, 2019, 40(2): 394-406. DOI: 10.1002/hbm.24380.
[30]
Sadowska-Krepa E, Rzetecki A, Zajac-Gawlak I, et al. Comparison of selected prooxidant-antioxidant balance and bone metabolism indicators and BDNF levels between older women with different levels of physical activity [J]. BMC Geriatr, 2023, 23(1): 489. DOI: 10.1186/s12877-023-04205-5.
[31]
Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ [J]. Nat Rev Endocrinol, 2012, 8(8): 457-465. DOI: 10.1038/nrendo.2012.49.
[32]
李敏,杨凡. 肌细胞因子在儿童肥胖症患儿运动减脂中的作用研究现状 [J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(2): 125-131. DOI: 10.3877/cmaj.i.sn.1673-5250.2023.02.001.
[1] 陈叶飞, 付笑影. 脂代谢在乳腺癌发生、发展及耐药中的作用机制[J]. 中华乳腺病杂志(电子版), 2020, 14(02): 112-115.
[2] 匡德凤, 李志国, 华绍芳, 薛凤霞. 高脂诱导孕鼠血清及胎盘组织脂肪酸结合蛋白-4及相关脂蛋白水平变化及其意义[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 338-344.
[3] 张佳妮, 毛赤慧, 曹祺, 王晓东. 妊娠期糖尿病患者产后糖代谢异常转归影响因素分析[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(01): 53-60.
[4] 张薇, 薛慧, 李光明, 王新. 妊娠期糖尿病患者产后血清白细胞介素-34水平对其糖代谢异常转归及胰岛素抵抗恢复的影响[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(05): 606-611.
[5] 赵玲霞, 曾凌空, 蔡保欢, 袁文浩. BSCL2基因突变导致先天性全身脂肪营养不良患儿的诊治并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(05): 574-581.
[6] 徐煜琛, 李璐, 薛冬令, 赵德伟. 外泌体介导股骨头坏死机制与治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(03): 247-252.
[7] 何昊, 郑克春, 唐利华, 漆星, 黄成, 牟攀. BDNF、PGRN在COPD伴下呼吸道感染中的表达及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 712-714.
[8] 王凯悦, 张新媛, 聂瑶, 邱冰洁, 赵琳, 康文婷. 脂类代谢异常与糖尿病视网膜微血管病变及神经元退行性改变的相关性研究[J]. 中华眼科医学杂志(电子版), 2020, 10(04): 212-218.
[9] 王景景, 符锋, 李建伟, 任党利, 陈翀, 刘慧, 孙洪涛, 涂悦. 针刺对中型创伤性颅脑损伤后BDNF/TrkB信号通路的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 199-205.
[10] 戴伟川, 郭协力, 蔡文华, 郑艳菲, 朱玉燕, 陈英贤. 弥漫性轴索损伤BDNF及其Val66Met基因多态性与认知功能的相关性研究[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 11-17.
[11] 张勇, 周丽, 何斌. BDNF Val66Met基因多态性对急性一氧化碳中毒迟发性脑病患者疗效的影响[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(06): 355-359.
[12] 于海波, 于迪, 苏彬, 郭一沙, 吴焕成, 毕军凤. 推拿结合超早期运动对急性缺血性脑卒中患者康复效果的影响[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(01): 32-37.
[13] 王增成, 葛敏, 赵惠君, 袁学伟, 王丽琴. 监测窒息新生儿血清BDNF、S100B及aEEG动态变化及对脑损伤预测价值[J]. 中华临床医师杂志(电子版), 2022, 16(01): 48-53.
[14] 高鑫, 年媛媛, 孟宪梅, 姚晓茹, 曹佳馨. 代谢异常状态及疾病与胃食管反流的相关性[J]. 中华胃食管反流病电子杂志, 2021, 08(04): 185-188.
[15] 巩江华, 李凝香, 李坚, 李枫, 童莉, 邢宏利, 何新霞. 探讨原发性高血压伴失眠患者血清NPY、5-HT、BDNF水平变化及其临床意义[J]. 中华脑血管病杂志(电子版), 2023, 17(06): 582-590.
阅读次数
全文


摘要