切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2023, Vol. 19 ›› Issue (06) : 643 -648. doi: 10.3877/cma.j.issn.1673-5250.2023.06.004

专题论坛

巨噬细胞在儿童肺炎支原体肺炎中作用机制的研究现状
薛嘉怡1, 王丽1, 艾涛1,()   
  1. 1. 电子科技大学医学院附属妇女儿童医院·成都市妇女儿童中心医院儿童呼吸科,成都 611731
  • 收稿日期:2023-07-11 修回日期:2023-11-03 出版日期:2023-12-01
  • 通信作者: 艾涛

Current research progress on mechanism of macrophages in children with Mycoplasma pneumoniae pneumonia

Jiayi Xue1, Li Wang1, Tao Ai1,()   

  1. 1. Department of Pediatric Respiratory Medicine, Chengdu Women′s and Children′s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan Province, China
  • Received:2023-07-11 Revised:2023-11-03 Published:2023-12-01
  • Corresponding author: Tao Ai
  • Supported by:
    Natural Science Foundation of Science and Technology Department of Sichuan Province(23NSFSC5420)
引用本文:

薛嘉怡, 王丽, 艾涛. 巨噬细胞在儿童肺炎支原体肺炎中作用机制的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 643-648.

Jiayi Xue, Li Wang, Tao Ai. Current research progress on mechanism of macrophages in children with Mycoplasma pneumoniae pneumonia[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(06): 643-648.

肺炎支原体(MP)是儿童及青少年社区获得性肺炎中感染的主要病原体之一,容易引起MP肺炎(MPP)患儿全身多脏器功能损害,严重者危及其生命。巨噬细胞作为固有免疫系统中重要组成部分,在对MP识别、诱导免疫反应、清除病原体及炎症反应等方面发挥重要作用。笔者拟就巨噬细胞对MP的识别、吞噬,儿童感染MP后,巨噬细胞极化、逃避巨噬细胞杀伤与巨噬细胞凋亡、焦亡及自噬等的最新研究进展进行阐述,旨在为巨噬细胞在MPP患儿发病机制中的作用及对MPP患儿的临床诊治提供参考。

Mycoplasma pneumoniae (MP) is one of the major pathogens of community-acquired pneumonia in children and adolescents. It can easily cause systemic multifunctional organ damage and endanger the life of severe MP pneumonia (MPP) child. As an important part of the innate immune system, macrophages play an important role in the recognition of MP, induction of immune response, elimination of pathogens and induction of inflammatory response. The authors will summarize the latest research progress on macrophage recognition and phagocytosis of MP, macrophage polarization, evasion of macrophage killing, macrophage apoptosis, pyroptosis and autophagy after children infected with MP, in order to provide references for the role of macrophages in the pathogenesis of children with MPP and the diagnosis and treatment of MP infection.

[1]
Gao LW, Yin J, Hu YH, et al. The epidemiology of pediatric Mycoplasma pneumoniae pneumonia in North China: 2006 to 2016[J]. Epidemiol Infect, 2019, 147: e192. DOI: 10.1017/S0950268819000839.
[2]
Lee KL, Lee CM, Yang TL, et al. Severe Mycoplasma pneumoniae pneumonia requiring intensive care in children, 2010-2019[J]. J Formos Med Assoc, 2021, 120(Pt 1): 281-291. DOI: 10.1016/j.jfma.2020.08.018.
[3]
Aegerter H, Lambrecht BN, Jakubzick CV. Biology of lung macrophages in health and disease[J]. Immunity, 2022, 55(9): 1564-1580. DOI: 10.1016/j.immuni.2022.08.010.
[4]
Lazarov T, Juarez-Carreño S, Cox N, et al. Physiology and diseases of tissue-resident macrophages[J]. Nature, 2023, 618(7966): 698-707. DOI: 10.1038/s41586-023-06002-x.
[5]
Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity[J]. Cell, 2020, 180(6): 1044-1066. DOI:10.1016/j.cell.2020.02.041.
[6]
Naghib M, Hatam-Jahromi M, Niktab M, et al. Mycoplasma pneumoniae and toll-like receptors: a mutual avenue[J]. Allergol Immunopathol (Madr), 2018, 46(5): 508-513. DOI: 10.1016/j.aller.2017.09.021.
[7]
Ma C, Hao X, Gao L, et al. Extracellular vesicles released from macrophages infected with Mycoplasma pneumoniae stimulate proinflammatory response via the TLR2-NF-κB/JNK signaling pathway[J]. Int J Mol Sci, 2023, 24(10): 8588. DOI: 10.3390/ijms24108588.
[8]
Luo H, He J, Qin L, et al. Mycoplasma pneumoniae lipids license TLR-4 for activation of NLRP3 inflammasome and autophagy to evoke a proinflammatory response[J]. Clin Exp Immunol, 2021, 203(1): 66-79. DOI: 10.1111/cei.13510.
[9]
Lai JF, Zindl CL, Duffy LB, et al. Critical role of macrophages and their activation via MyD88-NFκB signaling in lung innate immunity to Mycoplasma pneumoniae[J]. PLoS One, 2010, 5(12): e14417. DOI: 10.1371/journal.pone.0014417.
[10]
Almeida-da-Silva CLC, Savio LEB, Coutinho-Silva R, et al. The role of NOD-like receptors in innate immunity[J]. Front Immunol, 2023, 14: 1122586. DOI: 10.3389/fimmu.2023.1122586.
[11]
Kelley N, Jeltema D, Duan Y, et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation[J]. Int J Mol Sci, 2019, 20(13): 3328. DOI: 10.3390/ijms20133328.
[12]
Bose S, Segovia JA, Somarajan SR, et al. ADP-ribosylation of NLRP3 by Mycoplasma pneumoniae CARDS toxin regulates inflammasome activity[J]. mBio, 2014, 5(6): e02186-14. DOI: 10.1128/mBio.02186-14.
[13]
Kadomoto S, Izumi K, Mizokami A. Macrophage polarity and disease control[J]. Int J Mol Sci, 2021, 23(1): 144. DOI: 10.3390/ijms23010144.
[14]
Liu E, Li Z, Zhang Y, et al. Hepcidin induces M1 macrophage polarization in monocytes or THP-1 derived macrophages[J]. Iran J Immunol, 2019, 16(3): 190-199. DOI: 10.22034/IJI.2019.80270.
[15]
Atri C, Guerfali FZ, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases[J]. Int J Mol Sci, 2018, 19(6): 1801. DOI: 10.3390/ijms19061801.
[16]
Wang T, Sun H, Lu Z, et al. The CARDS toxin of Mycoplasma pneumoniae induces a positive feedback loop of type 1 immune response[J]. Front Immunol, 2022, 13: 1054788. DOI: 10.3389/fimmu.2022.1054788.
[17]
Lee YC, Chang CH, Lee WJ, et al. Altered chemokine profile in refractory Mycoplasma pneumoniae pneumonia infected children[J]. J Microbiol Immunol Infect, 2021, 54(4): 673-679. DOI: 10.1016/j.jmii.2020.03.030.
[18]
Lee HY, Chen CC, Pi CC, et al. Aspergillus oryzae fermentation extract alleviates inflammation in Mycoplasma pneumoniae pneumonia[J]. Molecules, 2023, 28(3): 1127. DOI: 10.3390/molecules28031127.
[19]
He J, Liu M, Ye Z, et al. Insights into the pathogenesis of Mycoplasma pneumoniae (review) [J]. Mol Med Rep, 2016, 14(5): 4030-4036. DOI: 10.3892/mmr.2016.5765.
[20]
Vizarraga D, Torres-Puig S, Aparicio D, et al. The sialoglycan binding adhesins of Mycoplasma genitalium and Mycoplasma pneumoniae[J]. Trends Microbiol, 2021, 29(6): 477–481. DOI:10.1016/j.tim.2021.01.011.
[21]
Hakim MS, Annisa L, Jariah ROA, et al. The mechanisms underlying antigenic variation and maintenance of genomic integrity in Mycoplasma pneumoniae and Mycoplasma genitalium[J]. Arch Microbiol, 2021, 203(2): 413-429. DOI: 10.1007/s00203-020-02041-4.
[22]
Vizarraga D, Kawamoto A, Matsumoto U, et al. Immunodominant proteins P1 and P40/P90 from human pathogen Mycoplasma pneumoniae[J]. Nat Commun, 2020, 11(1): 5188. DOI: 10.1038/s41467-020-18777-y.
[23]
Jiang Z, Li S, Zhu C, et al. Mycoplasma pneumoniae infections: pathogenesis and vaccine development[J]. Pathogens, 2021, 10(2): 119. DOI: 10.3390/pathogens10020119.
[24]
Chaudhry R, Ghosh A, Chandolia A. Pathogenesis of Mycoplasma pneumoniae: an update[J]. Indian J Med Microbiol, 2016, 34(1): 7-16. DOI: 10.4103/0255-0857.174112.
[25]
Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death[J]. Cell Mol Immunol, 2021, 18(5): 1106-1121. DOI: 10.1038/s41423-020-00630-3.
[26]
Ji J, Song L, Hong F, et al. Highly expressed lncRNA GAS5 in the serum of children with Mycoplasma pneumoniae pneumonia and its effect on LAMPs-induced apoptosis and inflammation[J]. Contrast Media Mol Imaging, 2022, 2022: 7872107. DOI: 10.1155/2022/7872107.
[27]
Vasudevan SO, Behl B, Rathinam VA. Pyroptosis-induced inflammation and tissue damage[J]. Semin Immunol, 2023, 69: 101781. DOI: 10.1016/j.smim.2023.101781.
[28]
Liu F, Liu T, Sun M, et al. Maxing shigan decoction mitigates Mycoplasma pneumonia-induced pyroptosis in A549 cells via the NLRP3 inflammasome[J]. Infect Drug Resist, 2021, 14: 859-867. DOI: 10.2147/IDR.S292413.
[29]
夏雯,戴晓玥,吴亮,等. 社区获得性呼吸窘迫综合征(CARDS)肺炎支原体毒素促进THP-1细胞自噬并激活NLRP3炎性体[J]. 细胞与分子免疫学杂志2020, 36(12): 1076-1082. DOI: 10.13423/j.cnki.cjcmi.009111.
[30]
Shimizu T, Kimura Y, Kida Y, et al. Cytadherence of Mycoplasma pneumoniae induces inflammatory responses through autophagy and toll-like receptor 4[J]. Infect Immun, 2014, 82(7): 3076-3086. DOI: 10.1128/IAI.01961-14.
[31]
Liu Y, Li J, Lu X, et al. Toll-like receptor 4 exacerbates Mycoplasma pneumoniaevia promoting transcription factor EB-mediated autophagy[J]. Contrast Media Mol Imaging, 2022, 2022: 3357694. DOI: 10.1155/2022/3357694.
[1] 陶宏宇, 叶菁菁, 俞劲, 杨秀珍, 钱晶晶, 徐彬, 徐玮泽, 舒强. 右心声学造影在儿童右向左分流相关疾病中的评估价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 959-965.
[2] 张凯, 乔永杰, 林志强, 刘健, 邓泽群, 谭飞, 曾健康, 李嘉欢, 李培杰, 周胜虎. 假体周围骨溶解中巨噬细胞极化的机制研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 618-625.
[3] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[4] 向韵, 卢游, 杨凡. 全氟及多氟烷基化合物暴露与儿童肥胖症相关性研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 569-574.
[5] 张梦思, 麻艺群, 蒙礼娟, 朱辉, 付晋凤. 压力手套与指蹼加压带及泡沫型硅凝胶贴膜联合应用于儿童瘢痕性并指术后的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 329-334.
[6] 郑宝英, 黄小兰, 贾楠, 朱春梅. 儿童难治性肺炎支原体肺炎早期预警指标[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 215-221.
[7] 刘冉佳, 崔向丽, 周效竹, 曲伟, 朱志军. 儿童肝移植受者健康相关生存质量评价的荟萃分析[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 302-309.
[8] 丁荷蓓, 王珣, 陈为国. 七氟烷吸入麻醉与异丙酚静脉麻醉在儿童腹股沟斜疝手术中的应用比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 570-574.
[9] 中华医学会器官移植学分会, 中华医学会外科学分会外科手术学学组, 中华医学会外科学分会移植学组, 华南劈离式肝移植联盟. 劈离式供肝儿童肝移植中国临床操作指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 593-601.
[10] 刘军, 丘文静, 孙方昊, 李松盈, 易述红, 傅斌生, 杨扬, 罗慧. 在体与离体劈离式肝移植在儿童肝移植中的应用比较[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 688-693.
[11] 张佳臣, 宋红欣. 儿童青少年等效球镜屈光度变化与屈光不正进展相关性的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 217-222.
[12] 张琛, 秦鸣, 董娟, 陈玉龙. 超声检查对儿童肠扭转缺血性改变的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 565-568.
[13] 王晓瑜, 郭群英, 牛雅萌, 赵成松. 公立儿童医院促进儿科就医均等化实践探析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 383-387.
[14] 陈晓胜, 何佳, 刘方, 吴蕊, 杨海涛, 樊晓寒. 直立倾斜试验诱发31 秒心脏停搏的植入心脏起搏器儿童一例并文献复习[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 488-494.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?