[1] |
Gao LW, Yin J, Hu YH, et al. The epidemiology of pediatric Mycoplasma pneumoniae pneumonia in North China: 2006 to 2016[J]. Epidemiol Infect, 2019, 147: e192. DOI: 10.1017/S0950268819000839.
|
[2] |
Lee KL, Lee CM, Yang TL, et al. Severe Mycoplasma pneumoniae pneumonia requiring intensive care in children, 2010-2019[J]. J Formos Med Assoc, 2021, 120(Pt 1): 281-291. DOI: 10.1016/j.jfma.2020.08.018.
|
[3] |
Aegerter H, Lambrecht BN, Jakubzick CV. Biology of lung macrophages in health and disease[J]. Immunity, 2022, 55(9): 1564-1580. DOI: 10.1016/j.immuni.2022.08.010.
|
[4] |
Lazarov T, Juarez-Carreño S, Cox N, et al. Physiology and diseases of tissue-resident macrophages[J]. Nature, 2023, 618(7966): 698-707. DOI: 10.1038/s41586-023-06002-x.
|
[5] |
Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity[J]. Cell, 2020, 180(6): 1044-1066. DOI: 10.1016/j.cell.2020.02.041.
|
[6] |
Naghib M, Hatam-Jahromi M, Niktab M, et al. Mycoplasma pneumoniae and toll-like receptors: a mutual avenue[J]. Allergol Immunopathol (Madr), 2018, 46(5): 508-513. DOI: 10.1016/j.aller.2017.09.021.
|
[7] |
Ma C, Hao X, Gao L, et al. Extracellular vesicles released from macrophages infected with Mycoplasma pneumoniae stimulate proinflammatory response via the TLR2-NF-κB/JNK signaling pathway[J]. Int J Mol Sci, 2023, 24(10): 8588. DOI: 10.3390/ijms24108588.
|
[8] |
Luo H, He J, Qin L, et al. Mycoplasma pneumoniae lipids license TLR-4 for activation of NLRP3 inflammasome and autophagy to evoke a proinflammatory response[J]. Clin Exp Immunol, 2021, 203(1): 66-79. DOI: 10.1111/cei.13510.
|
[9] |
Lai JF, Zindl CL, Duffy LB, et al. Critical role of macrophages and their activation via MyD88-NFκB signaling in lung innate immunity to Mycoplasma pneumoniae[J]. PLoS One, 2010, 5(12): e14417. DOI: 10.1371/journal.pone.0014417.
|
[10] |
Almeida-da-Silva CLC, Savio LEB, Coutinho-Silva R, et al. The role of NOD-like receptors in innate immunity[J]. Front Immunol, 2023, 14: 1122586. DOI: 10.3389/fimmu.2023.1122586.
|
[11] |
Kelley N, Jeltema D, Duan Y, et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation[J]. Int J Mol Sci, 2019, 20(13): 3328. DOI: 10.3390/ijms20133328.
|
[12] |
Bose S, Segovia JA, Somarajan SR, et al. ADP-ribosylation of NLRP3 by Mycoplasma pneumoniae CARDS toxin regulates inflammasome activity[J]. mBio, 2014, 5(6): e02186-14. DOI: 10.1128/mBio.02186-14.
|
[13] |
Kadomoto S, Izumi K, Mizokami A. Macrophage polarity and disease control[J]. Int J Mol Sci, 2021, 23(1): 144. DOI: 10.3390/ijms23010144.
|
[14] |
Liu E, Li Z, Zhang Y, et al. Hepcidin induces M1 macrophage polarization in monocytes or THP-1 derived macrophages[J]. Iran J Immunol, 2019, 16(3): 190-199. DOI: 10.22034/IJI.2019.80270.
|
[15] |
Atri C, Guerfali FZ, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases[J]. Int J Mol Sci, 2018, 19(6): 1801. DOI: 10.3390/ijms19061801.
|
[16] |
Wang T, Sun H, Lu Z, et al. The CARDS toxin of Mycoplasma pneumoniae induces a positive feedback loop of type 1 immune response[J]. Front Immunol, 2022, 13: 1054788. DOI: 10.3389/fimmu.2022.1054788.
|
[17] |
Lee YC, Chang CH, Lee WJ, et al. Altered chemokine profile in refractory Mycoplasma pneumoniae pneumonia infected children[J]. J Microbiol Immunol Infect, 2021, 54(4): 673-679. DOI: 10.1016/j.jmii.2020.03.030.
|
[18] |
Lee HY, Chen CC, Pi CC, et al. Aspergillus oryzae fermentation extract alleviates inflammation in Mycoplasma pneumoniae pneumonia[J]. Molecules, 2023, 28(3): 1127. DOI: 10.3390/molecules28031127.
|
[19] |
He J, Liu M, Ye Z, et al. Insights into the pathogenesis of Mycoplasma pneumoniae (review) [J]. Mol Med Rep, 2016, 14(5): 4030-4036. DOI: 10.3892/mmr.2016.5765.
|
[20] |
Vizarraga D, Torres-Puig S, Aparicio D, et al. The sialoglycan binding adhesins of Mycoplasma genitalium and Mycoplasma pneumoniae[J]. Trends Microbiol, 2021, 29(6): 477–481. DOI: 10.1016/j.tim.2021.01.011.
|
[21] |
Hakim MS, Annisa L, Jariah ROA, et al. The mechanisms underlying antigenic variation and maintenance of genomic integrity in Mycoplasma pneumoniae and Mycoplasma genitalium[J]. Arch Microbiol, 2021, 203(2): 413-429. DOI: 10.1007/s00203-020-02041-4.
|
[22] |
Vizarraga D, Kawamoto A, Matsumoto U, et al. Immunodominant proteins P1 and P40/P90 from human pathogen Mycoplasma pneumoniae[J]. Nat Commun, 2020, 11(1): 5188. DOI: 10.1038/s41467-020-18777-y.
|
[23] |
Jiang Z, Li S, Zhu C, et al. Mycoplasma pneumoniae infections: pathogenesis and vaccine development[J]. Pathogens, 2021, 10(2): 119. DOI: 10.3390/pathogens10020119.
|
[24] |
Chaudhry R, Ghosh A, Chandolia A. Pathogenesis of Mycoplasma pneumoniae: an update[J]. Indian J Med Microbiol, 2016, 34(1): 7-16. DOI: 10.4103/0255-0857.174112.
|
[25] |
Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death[J]. Cell Mol Immunol, 2021, 18(5): 1106-1121. DOI: 10.1038/s41423-020-00630-3.
|
[26] |
Ji J, Song L, Hong F, et al. Highly expressed lncRNA GAS5 in the serum of children with Mycoplasma pneumoniae pneumonia and its effect on LAMPs-induced apoptosis and inflammation[J]. Contrast Media Mol Imaging, 2022, 2022: 7872107. DOI: 10.1155/2022/7872107.
|
[27] |
Vasudevan SO, Behl B, Rathinam VA. Pyroptosis-induced inflammation and tissue damage[J]. Semin Immunol, 2023, 69: 101781. DOI: 10.1016/j.smim.2023.101781.
|
[28] |
Liu F, Liu T, Sun M, et al. Maxing shigan decoction mitigates Mycoplasma pneumonia-induced pyroptosis in A549 cells via the NLRP3 inflammasome[J]. Infect Drug Resist, 2021, 14: 859-867. DOI: 10.2147/IDR.S292413.
|
[29] |
|
[30] |
Shimizu T, Kimura Y, Kida Y, et al. Cytadherence of Mycoplasma pneumoniae induces inflammatory responses through autophagy and toll-like receptor 4[J]. Infect Immun, 2014, 82(7): 3076-3086. DOI: 10.1128/IAI.01961-14.
|
[31] |
Liu Y, Li J, Lu X, et al. Toll-like receptor 4 exacerbates Mycoplasma pneumoniaevia promoting transcription factor EB-mediated autophagy[J]. Contrast Media Mol Imaging, 2022, 2022: 3357694. DOI: 10.1155/2022/3357694.
|