切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2023, Vol. 19 ›› Issue (06) : 643 -648. doi: 10.3877/cma.j.issn.1673-5250.2023.06.004

专题论坛

巨噬细胞在儿童肺炎支原体肺炎中作用机制的研究现状
薛嘉怡1, 王丽1, 艾涛1,()   
  1. 1. 电子科技大学医学院附属妇女儿童医院·成都市妇女儿童中心医院儿童呼吸科,成都 611731
  • 收稿日期:2023-07-11 修回日期:2023-11-03 出版日期:2023-12-01
  • 通信作者: 艾涛

Current research progress on mechanism of macrophages in children with Mycoplasma pneumoniae pneumonia

Jiayi Xue1, Li Wang1, Tao Ai1,()   

  1. 1. Department of Pediatric Respiratory Medicine, Chengdu Women′s and Children′s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan Province, China
  • Received:2023-07-11 Revised:2023-11-03 Published:2023-12-01
  • Corresponding author: Tao Ai
  • Supported by:
    Natural Science Foundation of Science and Technology Department of Sichuan Province(23NSFSC5420)
引用本文:

薛嘉怡, 王丽, 艾涛. 巨噬细胞在儿童肺炎支原体肺炎中作用机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 643-648.

Jiayi Xue, Li Wang, Tao Ai. Current research progress on mechanism of macrophages in children with Mycoplasma pneumoniae pneumonia[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2023, 19(06): 643-648.

肺炎支原体(MP)是儿童及青少年社区获得性肺炎中感染的主要病原体之一,容易引起MP肺炎(MPP)患儿全身多脏器功能损害,严重者危及其生命。巨噬细胞作为固有免疫系统中重要组成部分,在对MP识别、诱导免疫反应、清除病原体及炎症反应等方面发挥重要作用。笔者拟就巨噬细胞对MP的识别、吞噬,儿童感染MP后,巨噬细胞极化、逃避巨噬细胞杀伤与巨噬细胞凋亡、焦亡及自噬等的最新研究进展进行阐述,旨在为巨噬细胞在MPP患儿发病机制中的作用及对MPP患儿的临床诊治提供参考。

Mycoplasma pneumoniae (MP) is one of the major pathogens of community-acquired pneumonia in children and adolescents. It can easily cause systemic multifunctional organ damage and endanger the life of severe MP pneumonia (MPP) child. As an important part of the innate immune system, macrophages play an important role in the recognition of MP, induction of immune response, elimination of pathogens and induction of inflammatory response. The authors will summarize the latest research progress on macrophage recognition and phagocytosis of MP, macrophage polarization, evasion of macrophage killing, macrophage apoptosis, pyroptosis and autophagy after children infected with MP, in order to provide references for the role of macrophages in the pathogenesis of children with MPP and the diagnosis and treatment of MP infection.

[1]
Gao LW, Yin J, Hu YH, et al. The epidemiology of pediatric Mycoplasma pneumoniae pneumonia in North China: 2006 to 2016[J]. Epidemiol Infect, 2019, 147: e192. DOI: 10.1017/S0950268819000839.
[2]
Lee KL, Lee CM, Yang TL, et al. Severe Mycoplasma pneumoniae pneumonia requiring intensive care in children, 2010-2019[J]. J Formos Med Assoc, 2021, 120(Pt 1): 281-291. DOI: 10.1016/j.jfma.2020.08.018.
[3]
Aegerter H, Lambrecht BN, Jakubzick CV. Biology of lung macrophages in health and disease[J]. Immunity, 2022, 55(9): 1564-1580. DOI: 10.1016/j.immuni.2022.08.010.
[4]
Lazarov T, Juarez-Carreño S, Cox N, et al. Physiology and diseases of tissue-resident macrophages[J]. Nature, 2023, 618(7966): 698-707. DOI: 10.1038/s41586-023-06002-x.
[5]
Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity[J]. Cell, 2020, 180(6): 1044-1066. DOI:10.1016/j.cell.2020.02.041.
[6]
Naghib M, Hatam-Jahromi M, Niktab M, et al. Mycoplasma pneumoniae and toll-like receptors: a mutual avenue[J]. Allergol Immunopathol (Madr), 2018, 46(5): 508-513. DOI: 10.1016/j.aller.2017.09.021.
[7]
Ma C, Hao X, Gao L, et al. Extracellular vesicles released from macrophages infected with Mycoplasma pneumoniae stimulate proinflammatory response via the TLR2-NF-κB/JNK signaling pathway[J]. Int J Mol Sci, 2023, 24(10): 8588. DOI: 10.3390/ijms24108588.
[8]
Luo H, He J, Qin L, et al. Mycoplasma pneumoniae lipids license TLR-4 for activation of NLRP3 inflammasome and autophagy to evoke a proinflammatory response[J]. Clin Exp Immunol, 2021, 203(1): 66-79. DOI: 10.1111/cei.13510.
[9]
Lai JF, Zindl CL, Duffy LB, et al. Critical role of macrophages and their activation via MyD88-NFκB signaling in lung innate immunity to Mycoplasma pneumoniae[J]. PLoS One, 2010, 5(12): e14417. DOI: 10.1371/journal.pone.0014417.
[10]
Almeida-da-Silva CLC, Savio LEB, Coutinho-Silva R, et al. The role of NOD-like receptors in innate immunity[J]. Front Immunol, 2023, 14: 1122586. DOI: 10.3389/fimmu.2023.1122586.
[11]
Kelley N, Jeltema D, Duan Y, et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation[J]. Int J Mol Sci, 2019, 20(13): 3328. DOI: 10.3390/ijms20133328.
[12]
Bose S, Segovia JA, Somarajan SR, et al. ADP-ribosylation of NLRP3 by Mycoplasma pneumoniae CARDS toxin regulates inflammasome activity[J]. mBio, 2014, 5(6): e02186-14. DOI: 10.1128/mBio.02186-14.
[13]
Kadomoto S, Izumi K, Mizokami A. Macrophage polarity and disease control[J]. Int J Mol Sci, 2021, 23(1): 144. DOI: 10.3390/ijms23010144.
[14]
Liu E, Li Z, Zhang Y, et al. Hepcidin induces M1 macrophage polarization in monocytes or THP-1 derived macrophages[J]. Iran J Immunol, 2019, 16(3): 190-199. DOI: 10.22034/IJI.2019.80270.
[15]
Atri C, Guerfali FZ, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases[J]. Int J Mol Sci, 2018, 19(6): 1801. DOI: 10.3390/ijms19061801.
[16]
Wang T, Sun H, Lu Z, et al. The CARDS toxin of Mycoplasma pneumoniae induces a positive feedback loop of type 1 immune response[J]. Front Immunol, 2022, 13: 1054788. DOI: 10.3389/fimmu.2022.1054788.
[17]
Lee YC, Chang CH, Lee WJ, et al. Altered chemokine profile in refractory Mycoplasma pneumoniae pneumonia infected children[J]. J Microbiol Immunol Infect, 2021, 54(4): 673-679. DOI: 10.1016/j.jmii.2020.03.030.
[18]
Lee HY, Chen CC, Pi CC, et al. Aspergillus oryzae fermentation extract alleviates inflammation in Mycoplasma pneumoniae pneumonia[J]. Molecules, 2023, 28(3): 1127. DOI: 10.3390/molecules28031127.
[19]
He J, Liu M, Ye Z, et al. Insights into the pathogenesis of Mycoplasma pneumoniae (review) [J]. Mol Med Rep, 2016, 14(5): 4030-4036. DOI: 10.3892/mmr.2016.5765.
[20]
Vizarraga D, Torres-Puig S, Aparicio D, et al. The sialoglycan binding adhesins of Mycoplasma genitalium and Mycoplasma pneumoniae[J]. Trends Microbiol, 2021, 29(6): 477–481. DOI:10.1016/j.tim.2021.01.011.
[21]
Hakim MS, Annisa L, Jariah ROA, et al. The mechanisms underlying antigenic variation and maintenance of genomic integrity in Mycoplasma pneumoniae and Mycoplasma genitalium[J]. Arch Microbiol, 2021, 203(2): 413-429. DOI: 10.1007/s00203-020-02041-4.
[22]
Vizarraga D, Kawamoto A, Matsumoto U, et al. Immunodominant proteins P1 and P40/P90 from human pathogen Mycoplasma pneumoniae[J]. Nat Commun, 2020, 11(1): 5188. DOI: 10.1038/s41467-020-18777-y.
[23]
Jiang Z, Li S, Zhu C, et al. Mycoplasma pneumoniae infections: pathogenesis and vaccine development[J]. Pathogens, 2021, 10(2): 119. DOI: 10.3390/pathogens10020119.
[24]
Chaudhry R, Ghosh A, Chandolia A. Pathogenesis of Mycoplasma pneumoniae: an update[J]. Indian J Med Microbiol, 2016, 34(1): 7-16. DOI: 10.4103/0255-0857.174112.
[25]
Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death[J]. Cell Mol Immunol, 2021, 18(5): 1106-1121. DOI: 10.1038/s41423-020-00630-3.
[26]
Ji J, Song L, Hong F, et al. Highly expressed lncRNA GAS5 in the serum of children with Mycoplasma pneumoniae pneumonia and its effect on LAMPs-induced apoptosis and inflammation[J]. Contrast Media Mol Imaging, 2022, 2022: 7872107. DOI: 10.1155/2022/7872107.
[27]
Vasudevan SO, Behl B, Rathinam VA. Pyroptosis-induced inflammation and tissue damage[J]. Semin Immunol, 2023, 69: 101781. DOI: 10.1016/j.smim.2023.101781.
[28]
Liu F, Liu T, Sun M, et al. Maxing shigan decoction mitigates Mycoplasma pneumonia-induced pyroptosis in A549 cells via the NLRP3 inflammasome[J]. Infect Drug Resist, 2021, 14: 859-867. DOI: 10.2147/IDR.S292413.
[29]
夏雯,戴晓玥,吴亮,等. 社区获得性呼吸窘迫综合征(CARDS)肺炎支原体毒素促进THP-1细胞自噬并激活NLRP3炎性体[J]. 细胞与分子免疫学杂志2020, 36(12): 1076-1082. DOI: 10.13423/j.cnki.cjcmi.009111.
[30]
Shimizu T, Kimura Y, Kida Y, et al. Cytadherence of Mycoplasma pneumoniae induces inflammatory responses through autophagy and toll-like receptor 4[J]. Infect Immun, 2014, 82(7): 3076-3086. DOI: 10.1128/IAI.01961-14.
[31]
Liu Y, Li J, Lu X, et al. Toll-like receptor 4 exacerbates Mycoplasma pneumoniaevia promoting transcription factor EB-mediated autophagy[J]. Contrast Media Mol Imaging, 2022, 2022: 3357694. DOI: 10.1155/2022/3357694.
[1] 王秋莲, 张莹, 李春敏, 耿斌. 儿童先天性右肺动脉异常的超声心动图诊断及漏误诊分析[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1271-1275.
[2] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[3] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[4] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[5] 刘婷婷, 林妍冰, 汪珊, 陈幕荣, 唐子鉴, 代东伶, 夏焙. 超声衰减参数成像评价儿童代谢相关脂肪性肝病的价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 787-794.
[6] 周钰菡, 肖欢, 唐毅, 杨春江, 周娟, 朱丽容, 徐娟, 牟芳婷. 超声对儿童髋关节暂时性滑膜炎的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 795-800.
[7] 蒙礼娟, 麻艺群, 王璐, 张梦思, 范鑫, 许水淋, 杨丽红, 朱辉, 付晋凤. 采用SRT-100放射治疗儿童增生性瘢痕的临床疗效初探[J]. 中华损伤与修复杂志(电子版), 2024, 19(01): 16-23.
[8] 夏普开提·甫拉提, 吐尔洪江·吐逊, 温浩, 姚刚. 胆道闭锁小儿肝移植手术时机、术式和疗效[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 1-4.
[9] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[10] 孙瑞雪, 朱莉, 刘文莉. 腹泻儿童用药依从性、用药态度现状及影响因素分析[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 72-76.
[11] 戚艳杰, 何凡, 郑毅. 国际ADHD非药物干预指南解读[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1080-1089.
[12] 刘笑笑, 张小杉, 刘群, 马岚, 段莎莎, 施依璐, 张敏洁, 王雅晳. 中国学龄前儿童先天性心脏病流行病学研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(09): 1021-1024.
[13] 李静, 张玲玲, 邢伟. 兴趣诱导理念用于小儿手术麻醉诱导前的价值及其对家属满意度的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 812-817.
[14] 庞宁东, 蒋贻洲, 姜华, 牛传强, 李海波, 刘浪, 刘珍银, 张靖. 经皮腔内血管成形术治疗儿童肾动脉狭窄的疗效及相关因素分析[J]. 中华介入放射学电子杂志, 2024, 12(01): 22-26.
[15] 吴敬芳, 谭清实, 郗夏颖, 樊节敏, 韩蕾, 辛美云. 鲁西南地区儿童呼吸道合胞病毒肺炎临床特征分析[J]. 中华诊断学电子杂志, 2024, 12(01): 44-49.
阅读次数
全文


摘要