切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2022, Vol. 18 ›› Issue (04) : 449 -459. doi: 10.3877/cma.j.issn.1673-5250.2022.04.011

论著

基于人工智能的骨龄辅助评价系统对四川地区完全性生长激素缺乏症患儿骨龄研究
许可1, 宁刚2,()   
  1. 1乐山市妇幼保健院放射科,乐山 614000
    2四川大学华西第二医院放射科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2022-01-25 修回日期:2022-07-10 出版日期:2022-08-01
  • 通信作者: 宁刚

Research on bone age of children with complete growth hormone deficiency from Sichuan area by Artificial Intelligence Assisted Bone Age Evaluation System

Ke Xu1, Gang Ning2,()   

  1. 1Department of Radiology, Leshan Maternal and Child Health Hospital, Leshan 614000, Sichuan Province, China
    2Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2022-01-25 Revised:2022-07-10 Published:2022-08-01
  • Corresponding author: Gang Ning
  • Supported by:
    National Key Research and Development Project(2017YPC0109004); Sichuan Soft Science Research Project(2014ZR0130)
引用本文:

许可, 宁刚. 基于人工智能的骨龄辅助评价系统对四川地区完全性生长激素缺乏症患儿骨龄研究[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(04): 449-459.

Ke Xu, Gang Ning. Research on bone age of children with complete growth hormone deficiency from Sichuan area by Artificial Intelligence Assisted Bone Age Evaluation System[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(04): 449-459.

目的

探讨采用基于"人工智能(AI)的骨龄辅助评价系统(上海初云医疗科技有限公司与四川大学华西第二医院合作开发)"(以下简称为AI系统)对完全性生长激素缺乏症(CGHD)患儿诊断及骨龄评价准确性。

方法

选择2014年7月至2019年11月,于四川大学华西第二医院确诊的66例来自四川地区CGHD患儿为研究对象,纳入研究组。选择同期于病例收集医院儿童保健科进行骨龄测定的67例来自四川地区身高达标儿童作为对照,纳入对照组。对每例受试儿进行左手腕关节正位X射线摄片骨龄测定,由2位医师采用《TW2骨龄评分法中国未成年人南方标准》(以下简称为TW2CHN)》与《TW3骨龄评分法标准》(以下简称为TW3),盲法评价受试儿TW2CHN-桡、尺、掌指骨(RUS)与TW2CHN-腕骨(carpal)、TW2CHN-20、TW3-RUS及TW3-carpal骨龄(以下简称为5种传统骨龄),以及以同性别、年龄身高达标儿童5种传统骨龄为标准,计算受试儿5种传统骨龄百分位数。同时,采用AI系统分别对每例受试儿采取TW2CHN与TW3法,评价其AI-TW2CHN-RUS、AI-TW2CHN-carpal、AI-TW2CHN-20、AI-TW3-RUS及AI-TW3-carpal骨龄(以下简称为5种AI骨龄)及其相应百分位数。以上述5种传统骨龄+5种AI骨龄(以下简称为10种骨龄)相应的P50P25P10P3值(统称为Pn值)作为诊断CGHD患儿临界值,分别计算其诊断CGHD患儿的敏感度、特异度、约登(Youden)指数、准确率、阳性似然比、阴性似然比、阳性预测值、阴性预测值。采用Kappa值评价2组受试儿5种传统骨龄百分位数与对应的5种AI骨龄百分位数评价结果的一致性,以及2位医师对2组受试儿TW2CHN-RUS骨龄百分位数评价结果一致性。绘制上述10种骨龄百分位数诊断CGHD患儿的受试者工作特征(ROC)曲线,并计算曲线下面积(AUC)。采用配对t检验,对2组受试儿TW2CHN骨龄与TW3骨龄进行比较。本研究遵循的程序符合2013年新修订的《世界医学协会赫尔辛基宣言》要求。2组受试儿年龄、性别构成比等一般临床资料比较,差异均无统计学意义(P>0.05)。

结果

①采用10种骨龄的Pn值分别作为诊断CGHD临界值,对133例受试儿CGHD诊断结果显示,除了TW3-RUS骨龄中,以骨龄≤P10作为诊断CGHD患儿临界值时的诊断准确率最高(85.0%),TW2CHN-RUS、TW2CHN-carpal、TW2CHN-20、TW3-carpal、AI-TW2CHN-RUS、AI-TW2CHN-carpal、AI-TW2CHN-20、AI-TW3-carpal、AI-TW3-RUS骨龄中,均为以骨龄≤P25作为临界值时,对CGHD的诊断准确率最高,分别为81.9%、75.2%、88.0%、78.2%、75.2%、73.6%、81.2%、72.9%、78.9%。②一致性检验结果显示,2组受试儿TW2CHN-RUS与AI-TW2CHN-RUS、TW2CHN-carpal与AI-TW2CHN-carpal、TW2CHN-20与AI-TW2CHN-20、TW3-RUS与AI-TW3-RUS、TW3-carpal与AI-TW3-carpal骨龄百分位数评价结果均为中等一致性,Kappa值分别为0.445、0.578、0.570、0.446、0.430(均为P<0.001)。③对2位医师对2组受试儿TW2CHN-RUS骨龄百分位数评价结果进行一致性检验显示,其Kappa值为0.790(P<0.001),一致性较高。④绘制10种骨龄百分位数评价结果诊断CGHD的ROC曲线分析结果显示,TW2CHN-RUS、TW2CHN-carpal、TW2CHN-20、TW3-carpal、TW3-RUS、AI-TW2CHN-RUS、AI-TW2CHN-carpal、AI-TW2CHN-20、AI-TW3-carpal、AI-TW3-RUS骨龄百分位数诊断CGHD患儿的AUC分别为0.932、0.859、0.915、0.895、0.844、0.823、0.805、0.866、0.860、0.764(均为P<0.001)。⑤133例受试儿的TW3-RUS、TW3-carpal、AI-TW3-RUS、AI-TW3-carpal骨龄,均分别显著低于TW2CHN-RUS、TW2CHN-carpal、AI-TW2CHN-RUS、AI-TW2CHN-carpal骨龄,并且差异均有统计学意义(t=21.746、25.287、16.498、9.290,P<0.001)。

结论

TW2CHN法、TW3法对CGHD患儿骨龄评价及诊断均有临床价值,TW2CHN-RUS骨龄对于CGDH患儿诊断效能高。四川地区儿童TW3骨龄较TW2CHN骨龄低,TW3法可能不完全适用于四川地区儿童骨龄评价。AI系统对于四川地区CGHD患儿骨龄评价结果与传统骨龄评价结果具有中等一致性,可为临床医师评价受试儿骨龄提供帮助。

Objective

To explore the accuracy of " Artificial Intelligence (AI) Assisted Bone Age Evaluation System (co-developed by Shanghai Chuyun Medical Technology Company Limited and West China Second Hospital of Sichuan University)" (hereinafter referred to as AI system) for diagnosis and bone age evaluation of children with complete growth hormone deficiency (CGHD).

Methods

A total of 66 children with CGHD from Sichuan area diagnosed in West China Second Hospital of Sichuan University from July 2014 to November 2019 were selected as research subjects and included into study group. And 67 children with normal height from Sichuan area who visited Department of Child Healthcare in cases collected hospital during the same period were selected as control and included into control group. Bone age of each child was examined by anteroposterior X-ray radiography of the left wrist joint. Bone ages of artificial TW2CHN-radial, ulnar, and short bones (RUS) and TW2CHN-carpal, TW2CHN-20, TW3-RUS and TW3-carpal (hereinafter referred to as 5 traditional bone ages) and their corresponding percentiles in children with the same gender and age were blindly evaluated by two physicians using TW2 Bone Age Scoring Method Southern Chinese Standard (hereinafter referred to as TW2CHN) and TW3 Bone Age Scoring Method Standard (hereinafter referred to as TW3). Meanwhile, the AI system was used to evaluate bone age and percentile of AI-TW2CHN-RUS, AI-TW2CHN-carpal, AI-TW2CHN-20, AI-TW3-RUS and AI-TW3-carpal (hereinafter referred to as 5 AI bone ages) of each subject by TW2CHN and TW3 methods respectively. Sensitivity, specificity, Youden index, accuracy, positive likelihood ratio, negative likelihood ratio, positive predictive value and negative predictive value of diagnosing CGHD children were calculated by using P50, P25, P10, and P3 values (collectively referred to as Pn values) of 5 traditional bone ages and 5 AI bone ages (hereinafter referred to as 10 bone ages) as critical values for diagnosis of CGHD in children. Kappa coefficient was used to evaluate the consistency of 5 traditional bone age percentile assessment results with the corresponding 5 AI bone age percentile assessment results, as well as the consistency of TW2CHN-RUS bone age percentile assessment results for 133 subjects by two physicians. The receiver operating characteristic (ROC) curves of 10 bone age percentile assessment results in diagnosis of CGHD were plotted and area under the curve (AUC) was calculated. Bone ages of TW2CHN and TW3 were compared by paired t test. The procedures followed in this study were in line with the requirements of newly revised World Medical Association Declaration of Helsinki in 2013. There were no significant differences in age, gender composition and other general clinical data between two groups (P>0.05).

Results

① CGHD diagnosis results of two groups by using Pn values of 10 bone ages as critical values for diagnosis of CGHD children showed that the diagnostic accuracy was the highest (85.0%) when bone age ≤P10 was used as the critical value for diagnosis of CGHD children except for TW3-RUS bone age. As for TW2CHN-RUS, TW2CHN-carpal, TW2CHN-20, TW3-carpal, AI-TW2CHN-RUS, AI-TW2CHN-carpal, AI-TW2CHN-20, AI-TW3-carpal, and AI-TW3-RUS bone ages, when bone age ≤P25 was taken as the critical value, the diagnostic accuracy of CGHD was the highest, which were 81.9%, 75.2%, 88.0%, 78.2%, 75.2%, 73.6%, 81.2%, 72.9%, 78.9%, respectively. ② Consistency test results showed that bone age percentiles of two groups evaluated by TW2CHN-RUS and AI-TW2CHN-RUS, TW2CHN-carpal and AI-TW2CHN-carpal, TW2CHN-20 and AI-TW2CHN-20, TW3-RUS and AI-TW3-RUS, TW3-carpal and AI-TW3-carpal were moderately consistent, and the Kappa values were 0.445, 0.578, 0.570, 0.446 and 0.430, respectively ( all P<0.001). ③Consistency test of TW2CHN-RUS bone age percentile evaluation results of two groups by two physicians showed that Kappa value was 0.790 (P<0.001), indicating a high consistency. ④ ROC curve analysis results of 10 bone age percentile for diagnosis of CGHD in two groups showed that AUC of TW2CHN-RUS, TW2CHN-carpal, TW2CHN-20, TW3-carpal, TW3-RUS, AI-TW2CHN-RUS, AI-TW2CHN-carpal, AI-TW2CHN-20, AI-TW3-carpal, AI-TW3-RUS bone ages for diagnosis of CGHD children were 0.932, 0.859, 0.915, 0.895, 0.844, 0.823, 0.805, 0.866, 0.860, 0.764 (all P<0.001). ⑤Bone ages of TW3-RUS, TW3-carpal, AI-TW3-RUS and AI-TW3-carpal in 133 subjects were significantly lower than those of TW2CHN-RUS, TW2CHN-carpal, AI-TW2CHN-RUS and AI-TW2CHN-carpal, respectively, and all differences were statistically significant (t=21.746, 25.287, 16.498, 9.290; P<0.001).

Conclusions

TW2CHN and TW3 method have clinical values in evaluation of bone ages and diagnosis of children with CGHD, and TW2CHN-RUS bone age has the highest diagnostic efficiency for children with CGDH. Bone ages of children in Sichuan area evaluated by TW3 method are lower than that of TW2CHN method, and TW3 method may not be completely applicable to children in Sichuan area. Bone age of CGHD children in Sichuan area evaluated by AI system has moderate consistency with the results of traditional manual bone age evaluation, but it can be used as an auxiliary tool to help clinicians accurately evaluate the bone age of children.

表1 以10种骨龄P50P25P10P3值作为CGHD诊断临界值对133例受试儿CGHD诊断结果
骨龄百分位数 真阳性数(例) 假阳性数(例) 假阴性数(例) 真阴性数(例) 敏感度(%) 特异度(%) 约登指数(%) 阳性似然比 阴性似然比 阳性预测值(%) 阴性预测值(%) 准确率(%)
TW2CHN-RUS骨龄                        
  P50 66 25 0 42 100.0 62.7 62.7 2.680 0 72.6 100.0 81.2
  P25 42 0 24 67 63.6 100.0 63.6 0.364 100.0 73.6 81.9
  P10 13 0 53 67 19.7 100.0 19.7 0.803 100.0 55.8 60.1
  P3 1 0 65 67 1.5 100.0 1.5 0.984 100.0 50.7 51.1
TW2CHN-carpal骨龄                        
  P50 66 39 0 28 100.0 41.8 41.8 1.718 0 62.8 100.0 70.7
  P25 26 8 20 59 56.5 88.0 44.6 4.734 0.494 76.5 74.7 75.2
  P10 18 2 48 65 27.2 97.0 24.3 9.136 0.750 90.0 57.5 62.4
  P3 6 0 60 67 9.1 100.0 9.1 0.909 100.0 52.7 54.9
TW2CHN-20骨龄                        
  P50 66 47 0 20 100.0 29.8 29.8 1.425 0 58.4 100.0 64.7
  P25 50 0 16 67 75.7 100.0 75.7 0.242 100.0 80.7 88.0
  P10 23 0 43 67 34.8 100.0 34.8 0.651 100.0 60.9 67.7
  P3 6 0 60 67 9.1 100.0 9.0 0.909 100.0 52.7 54.9
TW3-carpal骨龄                        
  P50 66 58 0 9 100.0 13.4 13.4 1.155 0 53.2 100.0 56.4
  P25 62 25 4 42 93.9 62.7 56.6 2.517 0.097 71.3 91.3 78.2
  P10 42 12 24 55 63.6 82.1 45.7 3.553 0.443 77.8 69.6 72.9
  P3 20 1 46 66 30.3 98.5 28.8 20.303 0.708 95.2 58.9 64.6
TW3-RUS骨龄                        
  P50 66 61 0 6 100.0 9.0 9.0 1.098 0 52.0 100.0 54.1
  P25 64 27 2 40 97.0 59.7 56.7 2.406 0.05 70.3 95.2 78.2
  P10 53 7 13 60 80.3 89.6 69.9 7.686 0.22 88.3 82.2 85.0
  P3 31 1 35 66 47.0 98.5 45.0 31.469 0.538 96.9 65.3 72.9
AI-TW2CHN-RUS骨龄                        
  P50 54 23 12 44 81.8 65.7 47.5 2.383 0.277 70.1 78.6 73.7
  P25 34 1 32 66 51.5 98.5 50.0 34.515 0.492 97.1 67.3 75.2
  P10 7 0 59 67 10.6 100.0 10.6 0.893 100.0 53.2 55.6
  P3 0 0 66 67 0 100.0 0 1.000 50.4 50.4
AI-TW2CHN-carpal骨龄                        
  P50 62 37 4 30 93.9 44.8 38.7 1.701 0.135 62.6 88.2 69.2
  P25 40 9 26 58 60.6 86.6 47.2 4.511 0.455 81.6 69.0 73.6
  P10 13 2 53 65 19.7 97.0 16.7 6.598 0.827 86.7 55.1 58.6
  P3 7 0 59 67 10.6 100.0 10.6 0.894 100.0 53.1 55.6
AI-TW2CHN-20骨龄                        
  P50 64 42 2 25 97.0 37.3 34.3 1.547 0.081 60.4 92.6 66.9
  P25 43 2 23 65 65.1 97.0 62.1 21.826 0.359 95.6 73.9 81.2
  P10 20 0 46 67 30.3 100.0 30.3 0.697 100.0 59.2 65.4
  P3 6 0 60 67 9.1 100.0 9.1 0.909 100.0 52.8 54.9
AI-TW3-carpal骨龄                        
  P50 62 52 4 15 93.9 22.4 16.3 1.210 0.271 54.4 78.9 57.9
  P25 51 21 15 46 77.3 68.7 45.9 2.465 0.331 70.8 75.4 72.9
  P10 34 10 32 57 51.5 85.1 36.6 3.452 0.570 77.3 64.0 68.4
  P3 12 2 54 65 18.2 97.0 15.2 6.091 0.843 85.7 54.6 57.9
AI-TW3-RUS骨龄                        
  P50 66 56 0 11 100.0 16.4 16.4 1.197 0 54.1 100.0 57.9
  P25 56 18 10 49 84.8 73.1 58.0 3.158 0.207 75.7 83.0 78.9
  P10 42 6 24 61 63.6 91.0 54.7 7.106 0.399 87.5 71.8 77.4
  P3 15 0 51 67 22.7 100.0 22.7 0.773 100.0 56.8 61.7
表2 2位医师对133例受试儿TW2CHN-RUS骨龄百分位数评价结果的一致性检验(例)
表3 10种骨龄百分位数评价结果对133例受试儿CGHD诊断的ROC曲线分析结果
图1 10种骨龄百分位数评价结果对133例受试儿CGHD诊断的ROC曲线注:CGHD为完全性生长激素缺乏症。ROC曲线为受试者工作特征曲线。TW2CHN为《TW2骨龄评分法中国未成年人南方标准》。RUS为桡、尺、掌指骨,carpal为腕骨。AI为人工智能
表4 133例受试儿TW2CHN与TW3骨龄评价结果比较(岁,±s)
[1]
中华医学会儿科学分会内分泌遗传代谢学组. 矮身材儿童诊治指南[J]. 中华儿科杂志2008, 46(6): 428-430. DOI: 10.3760/cma.j.issn.0578-1310.2008.06.107.
[2]
韩晓伟,董治亚,张婉玉,等. 矮小症病因及临床特征分析[J]. 临床儿科杂志2019, 37(1): 39-42. DOI: 10.3969/j.issn.1000-3606.2019.01.010.
[3]
Richmond E, Rogol AD. Testing for growth hormone deficiency in children[J]. Growth Horm IGF Res, 2019, 50: 57-60. DOI: 10.1016/j.ghir.2019.12.002.
[4]
谭梦婷,钟华,徐小红,等. 骨龄测定评估儿童生长发育的价值分析[J]. 锦州医科大学学报2019, 40(2): 27-29. DOI: 10.13847/j.cnki.lnmu.2019.02.009.
[5]
卢皓明. 不同骨龄测评方法在特发性矮小症患儿数字骨龄片评价中的应用[J].现代医用影像学2021, 30(7): 1307-1309. DOI: 10.3969/j.issn.1006-7035.2021.07.036.
[6]
易新容,何鑫,贾富全. CHN法评估呼和浩特地区汉族儿童青少年手腕部骨龄的结果分析[J]. 内蒙古医学杂志2021, 53(8): 902-905,封2. DOI: 10.16096/J.cnki.nmgyxzz.2021.53.08.002.
[7]
叶义言. 新版骨龄评分法概述[J]. 中华儿科杂志2004, 42(1): 32-34. DOI: 10.3760/j.issn:0578-1310.2004.01.009.
[8]
叶义言,王创新. 儿童青少年骨龄评分方法的研究[J]. 湖南医科大学学报1991, 16(4): 355-359.
[9]
陈卫富,周爱萍,顾红丹,等. 血清胰岛素样生长因子-1、胰岛素样生长因子结合蛋白-3及骨龄在矮小症儿童诊断中的价值[J]. 中国妇幼保健2018, 33(9): 2047-2050. DOI: 10.7620/zgfybj.j.issn.1001-4411.2018.09.42.
[10]
邓演超,李全双,沈红艳,等. 胰岛素样生长因子在诊断儿童生长激素缺乏症中的临床价值[J].中国校医2019, 33(11): 807-808, 814.
[11]
王永梅,江咏梅,于凡,等. 生长激素缺乏症儿童骨代谢标志物水平分析[J].国际检验医学杂志2021, 42(15): 1807-1810. DOI: 10.3969/j.issn.1673-4130.2021.15.004.
[12]
宁刚,吴康敏,李开明,等. 骨龄测定及成年身高预测软件在儿科临床的应用价值[J]. 华西医科大学学报2002, 33(2): 302-304. DOI: 10.3969/j.issn.1672-173X.2002.02.044.
[13]
叶义言.中国儿童骨龄评分法[M]. 北京:人民卫生出版社,2005: 63-172.
[14]
程琳. TW2、TW3两种骨龄评估方法用于GHD患儿骨龄推断的临床应用比较[D]. 南宁:广西医科大学,2012.
[15]
陈伟伟,刘焕欣,刘晶,等. 儿童身材矮小的病因分析及遗传学诊断[J]. 中国当代儿科杂志2019, 21(4): 381-386. DOI: 10.7499/j.issn.1008-8830.2019.04.015.
[16]
李坚旭,卢秋婷,邱明慧,等. 265例儿童矮小症的病因分析[J]. 实用临床医学2017, 18(1): 64-65. DOI: 10.13764/j.cnki.lcsy.2017.01.025.
[17]
白云. 儿童矮小症的原因分析与预防[J]. 中国卫生标准管理2021, 12(11): 8-10. DOI: 10.3969/j.issn.1674-9316.2021.11.003.
[18]
曹应琼,他卉,万莉,等. 2016年四川省儿童青少年学生生长发育与营养状况分析[J]. 现代预防医学2019, 46(1): 48-52.
[19]
李彬,林家健,林育成,等. 人工智能在儿童骨龄X线影像诊断中的应用研究[J]. 中国医学工程2022, 30(3): 83-85. DOI: 10.19338/j.issn.1672-2019.2022.03.020.
[20]
宁刚,曲海波,刘关键,等. TW法在女性患儿特发性性早熟尺桡骨和手短骨骨龄评价的诊断性试验研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2008, 4(5): 16-20. DOI: 10.3969/j.issn.1673-5250.2008.05.005.
[21]
崔蕴璞,张铭涛,王新利. 不同病因矮身材儿童TW2-R、C、T骨龄评分特征研究[J]. 中国当代儿科杂志2015, 7(5): 464-468. DOI: 10.7499/j.issn.1008-8830.2015.05.010.
[22]
白万晶,宁刚,曲海波,等. TW2法3种标准用于中枢性性早熟患儿骨龄推断的比较[J]. 法医学杂志2010, 26(3): 181-184. DOI: 10.3969/j.issn.1004-5619.2010.03.006.
[23]
胡婷鸿,火忠,刘太昂,等. 基于深度学习实现维吾尔族青少年左手腕关节骨龄自动化评估[J]. 法医学杂志2018, 34(1): 27-32. DOI: 10.3969/j.issn.1004-5619.2018.01.006.
[24]
占梦军,张世杰,刘力,等. 基于深度学习自动化评估四川汉族青少年左手腕关节骨龄[J]. 中国法医学杂志2019, 34(5): 427-432. DOI: 10.13618/j.issn.1001-5728.2019.05.002.
[25]
杨姣. 人工智能在儿童骨龄影像诊断的应用及发展[J]. 江苏卫生事业管理2020, 31(1): 89-92. DOI: 10.3969/j.issn.1005-7803.2020.01.027.
[26]
次旦旺久,拉巴顿珠,王凤丹,等. 三种方法评估藏族儿童骨龄效果比较及藏族儿童骨龄发育特点[J]. 协和医学杂志2021, 12(3): 411-416. DOI: 10.12290/xhyxzz.20200259.
[27]
彭乐媛,段玉梅,王永芹,等. 4种新型人工智能算法在区域人群骨龄测定中的价值[J]. 中国医学装备2021, 18(11): 113-117. DOI: 10.3969/J.ISSN.1672-8270.2021.11.027.
[1] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[2] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[3] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[4] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[5] 刘婷婷, 林妍冰, 汪珊, 陈幕荣, 唐子鉴, 代东伶, 夏焙. 超声衰减参数成像评价儿童代谢相关脂肪性肝病的价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 787-794.
[6] 周钰菡, 肖欢, 唐毅, 杨春江, 周娟, 朱丽容, 徐娟, 牟芳婷. 超声对儿童髋关节暂时性滑膜炎的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 795-800.
[7] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[8] 米洁, 陈晨, 李佳玲, 裴海娜, 张恒博, 李飞, 李东杰. 儿童头面部外伤特点分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 511-515.
[9] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[10] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[11] 王蕾, 王少华, 牛海珍, 尹腾飞. 儿童腹股沟疝围手术期风险预警干预[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 768-772.
[12] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[13] 卓少宏, 林秀玲, 周翠梅, 熊卫莲, 马兴灶. CD64指数、SAA/CRP、PCT联合检测在小儿消化道感染性疾病鉴别诊断中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 505-509.
[14] 刘笑笑, 张小杉, 刘群, 马岚, 段莎莎, 施依璐, 张敏洁, 王雅晳. 中国学龄前儿童先天性心脏病流行病学研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1021-1024.
[15] 李静, 张玲玲, 邢伟. 兴趣诱导理念用于小儿手术麻醉诱导前的价值及其对家属满意度的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 812-817.
阅读次数
全文


摘要