切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2022, Vol. 18 ›› Issue (02) : 175 -184. doi: 10.3877/cma.j.issn.1673-5250.2022.02.008

论著

CYP27B1基因突变所致维生素D依赖性佝偻病ⅠA型患儿临床特征与基因分析
杜牧, 陈晓波(), 宋福英, 刘子勤, 钱坤   
  1. 首都儿科研究所附属儿童医院内分泌科,北京 100020
  • 收稿日期:2022-01-06 修回日期:2022-03-14 出版日期:2022-04-01
  • 通信作者: 陈晓波

Clinical characteristics and genetic analysis of vitamin D-dependent rickets ⅠA caused by CYP27B1 gene mutation

Mu Du, Xiaobo Chen(), Fuying Song, Ziqin Liu, Kun Qian   

  1. Department of Endocrinology, Children′s Hospital, Capital Institute of Pediatrics, Beijing 100020, China
  • Received:2022-01-06 Revised:2022-03-14 Published:2022-04-01
  • Corresponding author: Xiaobo Chen
  • Supported by:
    Capital Health Development and Research Special Project of Beijing Municipal Health and Family Planning Commission(Capital Development 2018-2-2101); Scientific Research Cultivation Program of Beijing Hospitals Authority(PX2020054)
引用本文:

杜牧, 陈晓波, 宋福英, 刘子勤, 钱坤. CYP27B1基因突变所致维生素D依赖性佝偻病ⅠA型患儿临床特征与基因分析[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 175-184.

Mu Du, Xiaobo Chen, Fuying Song, Ziqin Liu, Kun Qian. Clinical characteristics and genetic analysis of vitamin D-dependent rickets ⅠA caused by CYP27B1 gene mutation[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(02): 175-184.

目的

探讨维生素D依赖性佝偻病(VDDR)ⅠA型患儿的临床特征,以及CYP27B1基因突变情况。

方法

选择2019年3月至12月,于首都儿科研究所附属儿童医院内分泌科确诊为VDDR ⅠA型的2例患儿(患儿1、2)为研究对象。采用回顾性研究方法,①分析其临床表现,基因检测、治疗、转归及随访结果等。②对2例患儿检出的新突变,采用MutationTaster、SIFT、PROVEAN、Polyphen-2等蛋白质功能预测软件,预测该基因新突变的致病性。按照2015年美国医学遗传学与基因组学学会(ACMG)制定的《ACMG遗传变异分类标准与指南》,对该基因新突变致病性进行分级。③通过比对8种灵长类及100种脊椎动物CYP27B1基因编码蛋白质序列,判断新突变位点在不同物种中的保守性。④利用Rosetta软件,对CYP27B1基因新突变后编码蛋白质建立同源3D模型,分析突变前、后蛋白质结构。本研究经首都儿科研究所伦理委员会批准(审批文号:首都儿科研究所SHERLL2020003)。

结果

①一般临床资料:患儿1、2均为男性患儿,年龄分别为5岁7个月和1岁8个月,分别因为"双下肢畸形3年"及"走路始步态不稳8个月",于病例收集医院住院治疗。②入院查体:身高均低于同性别、年龄健康儿童,均存在肋下缘、双膝关节外翻,双下肢呈"X"型。患儿1存在方颅畸形、"鸡胸"、肋骨"串珠"样改变。③入院时实验室及影像学检查:血钙、磷均降低,25-羟维生素D3[25(OH)-D3]稍低(患儿1)或正常(患儿2),碱性磷酸酶(ALP)、甲状旁腺素(PTH)均明显升高。腕、膝关节X射线摄片检查均可见尺、桡骨干骺端先期钙化带不规则,放射冠征、杯口征等佝偻病特征性改变。④基因检测:患儿1存在CYP27B1基因c.1358G>A与c.184C>T复合杂合突变;患儿2存在c.1325_1326insCCCACCC纯合突变,均遗传自其父母,被确诊为VDDR ⅠA型。⑤治疗及随访:对2例患儿采取骨化三醇及钙剂口服治疗后分别随访15个月和22个月,佝偻病相应症状、体征好转,出现追赶生长,实验室及影像学指标恢复正常,可见干骺端光整。⑥新突变致病性及其分级:CYP27B1基因c.184C>T在人类基因突变数据库(HGMD)(http://www.hgmd.cf.ac.uk)中尚未收载,为新突变。采用MutationTaster、SIFT、PROVEAN、Polyphen-2蛋白质功能预测软件分析发现,该新突变具有致病性;根据《ACMG遗传变异分类标准与指南》,该新突变被判断为可能致病性突变。⑦新突变位点在不同物种中的保守性分析:对CYP27B1基因该新突变位点编码蛋白质序列,在8种灵长类及100种脊椎动物中的保守性分析发现,该位点高度保守。⑧新突变前、后编码蛋白质三维结构分析:采用Rosetta软件对CYP27B1基因c.184C>T突变前、后编码蛋白质同源3D模型发现,该位点突变后,第62位氨基酸由组氨酸突变成酪氨酸后,增加了与第491位苏氨酸残基的极性相互作用,可能引起编码蛋白质结构变化。

结论

对于血钙、磷均降低,伴有PTH升高,25(OH)-D3非明显降低患儿,需考虑VDDR ⅠA型可能,应采取CYP27B1基因检测确诊。如果CYP27B1基因c.184C>T突变后续被HGMD证明是新突变,则本研究将丰富CYP27B1基因突变类型。

Objective

To explore clinical characteristics and CYP27B1 gene mutation of children with vitamin D-dependent rickets (VDDR) IA.

Methods

Two boys (case 1 and 2) with VDDR IA diagnosed in Department of Endocrinology, Children′s Hospital, Capital Institute of Pediatrics from March to December 2019 were selected as research subjects. Their clinical data of were analyzed by retrospective research methods. ①The clinical manifestations, gene detection, treatment, and follow-up results were analyzed. ②Protein function prediction softwares, such as MutationTaster, SIFT, PROVEAN, and Polyphen-2 were used to predict their pathogenicity of unreported novel mutation. Their pathogenicity of novel mutation was graded according to the ACMG Standards and Guidelines for the Interpretation of Sequence Variants developed by American College of Medical Genetics and Genomics (ACMG) in 2015. ③The conservation of novel mutation was judged by comparing protein sequences encoded by CYP27B1 gene in 8 species of primates and 100 species of vertebrates. ④Coding protein of novel mutation of CYP27B1 gene was built homologous 3D model by Rosetta software, and changes of protein structure before and after variant were analyzed. This study was approved by the Ethics Committee of Capital Institute of Pediatrics (No. SHERLL2020003).

Results

①Age of case 1 and 2 were 5-year-7-month, and 1-year-8 month. They admitted because of " lower limb deformity for more than 3 years" and " unsteady gait since walking for 8 months" in cases collection hospital. ②They were all shorter than children of the same gender and age, and both had valgus of lower costal margin, valgus of both knees, and an " X" shape of both lower extremities. Case 1 also had caput quadratum deformity, " chicken breast" and " beaded" rib changes. ③Their serum calcium and phosphorus decreased, 25-hydroxyvitamin D3 [25(OH)-D3] slightly decreased (case 1) or normal (case 2), alkaline phosphatase (ALP) and parathyroid hormone (PTH) were significantly increased. X-ray examination of wrist and knee joints showed that there were irregular calcification zones in metaphysis of ulna and radius, and characteristic changes of rickets, such as corona radiate sign and crateriform sign. ④Case 1 carried CYP27B1 gene c. 1358G>A and c. 184C>T compound heterozygous mutation, which inherited from his mother and father, respectively, and case 2 carried c. 1325_1326insCCCACCC homozygous mutation, which inherited from his parents. Both of them were diagnosed as VDDR IA. ⑤They were treated with calcitriol and calcium, and followed up 15 months and 22 months, their symptoms and signs of rickets improved, achieving height catch-up growth, laboratory indicators returned to normal, and imaging examination showed that the bone mineral density was normal and metaphysis was smooth. ⑥Novel missense mutation c. 184C>T of CYP27B1 gene has not been reported in the Human Gene Mutation Database (HGMD) (http: //www.hgmd.cf.ac.uk). Protein functional verification suggested that this mutation was pathogenic variant. And this mutation was judged to be a probable pathogenic variant according to the ACMG Standards and Guidelines for the Interpretation of Sequence Variants. ⑦Protein sequence coded by CYP27B1 gene was highly conserved in 8 species of primates and 100 species of vertebrates. ⑧3D structure of encoded protein before and after the variant of CYP27B1 gene modeled by Rosetta software showed that the 62nd amino acid changed from histidine to tyrosine after variant, interacted with the 491nd threonine residue by one more polarity, which might cause the change of protein structure.

Conclusions

For children with reduction of serum calcium and phosphorus, accompanied obvious increasing of PTH and inconspicuous decreasing of 25(OH)-D3, attention should be especially paid to VDDR IA and CYP27B1 gene testing can be conducted to confirm the diagnosis. If CYP27B1 gene c. 184C>T mutation is subsequently proven to be a novel mutation by HGMD, this study will enrich the CYP27B1 gene mutation types.

图1 VDDR ⅠA型患儿1 (男性,5岁7个月)与患儿2 (男性,1岁8个月)治疗前、后腕、膝关节X射线摄片检查结果[图1A:患儿1治疗前左腕关节X射线摄片图,可见左尺、桡骨骨质结构稀疏,骨密度减低,尺、桡骨干骺端先期钙化带不规则、毛糙,呈放射冠征、杯口征;图1B:患儿1治疗1年3个月后,左腕关节X射线摄片图,可见左尺、桡骨与掌、指骨骨质接近正常,尺、桡骨干骺端光整;图1C:患儿2治疗前左腕关节X射线摄片图,可见尺、桡骨干骺端先期钙化带不规则,呈放射冠征、杯口征,尺、桡骨可见边角突出征,尺、桡骨骨小梁稀疏;图1D:患儿2调整药物剂量治疗3个月后,左腕关节X射线摄片图,可见左尺、桡骨骨密度好转,干骺端仍毛糙,较其治疗前好转(图1C);图1E:患儿2治疗前双膝关节X射线摄片图,可见双侧股骨远端及胫骨近端先期钙化带不规则、毛糙,呈放射冠征;图1F:患儿2规律治疗半年后,右膝关节X射线摄片图,可见右股骨、胫腓骨骨质密度正常,股骨远端及胫骨近端干骺端光整]注:VDDR为维生素D依赖性佝偻病
表1 VDDR ⅠA型患儿1、2不同时间实验室检查结果及骨化三醇与钙剂治疗剂量
图2 VDDR ⅠA型患儿1及其父母CYP27B1基因检测结果(图2A:患儿1及其母亲存在CYP27B1基因c.1358G>A杂合突变;图2B:患儿1及其父亲存在CYP27B1基因c.184C>T杂合突变)注:VDDR为维生素D依赖性佝偻病。NCBI为美国国家生物技术信息中心
图3 VDDR ⅠA型患儿2及其父母CYP27B1基因检测结果注:VDDR为维生素D依赖性佝偻病。患儿2发生c.1325_1326insCCCACCC(p.Phe443Profs*24)纯合突变,插入7个碱基(CCCACCC),发生框移突变,其父母均为c.1325_1326insCCCACCC(p.Phe443Profs*24)杂合突变携带者
图4 CYP27B1基因进化保守性分析(图4A:8种灵长类动物的CYP27B1基因多重序列编码蛋白质的第62位组氨酸高度保守;图4B:100种脊椎动物的CYP27B1基因编码蛋白质的第62位氨基酸左、右侧15个氨基酸序列图提示,CYP27B1基因编码蛋白质的第62位氨基酸均为组氨酸)注:S、F、L、A、E、C、K、G、R、H、Q、V、P、W、D、Y、M分别代表丝氨酸、苯丙氨酸、亮氨酸、丙氨酸、谷氨酸、半胱氨酸、赖氨酸、甘氨酸、精氨酸、组氨酸、谷氨酰胺、缬氨酸、脯氨酸、色氨酸、天冬氨酸、酪氨酸、蛋氨酸
图5 CYP27B1基因c.184C>T(p.H62Y)突变前、后编码蛋白质三维结构建模分析[图5A:野生型CYP27B1基因编码蛋白质的整体三维结构;图5B:野生型CYP27B1基因编码蛋白质的部分三维结构,虚线表示HIS-62残基与VAL-66残基之间的极性相互作用(箭头所示);图5C:CYP27B1基因c.184C>T(p.H62Y)突变后编码蛋白质的部分三维结构,虚线表示TYR-62残基与VAL-66、THR-491残基之间的极性相互作用(箭头所示)]注:HIS-62、VAL-66、GLN-65、LEU-64、TYR-413、GLU-63、PRO-385、LEU-61、THR-491、ARG-60、TYR-62分别代表第62位组氨酸、66位缬氨酸,65位谷氨酰胺、64位亮氨酸、413位酪氨酸、63位谷氨酸、385位脯氨酸、61位亮氨酸、491位苏氨酸,60位精氨酸、62位酪氨酸
[1]
Gjørup H, Beck-Nielsen SS, Haubek D. Craniofacial and dental characteristics of patients with vitamin-D-dependent rickets type 1A compared to controls and patients with X-linked hypophosphatemia[J]. Clin Oral Investig, 2018, 22(2): 745-755. DOI: 10.1007/s00784-017-2149-4.
[2]
Li Y, Yuan X, Chen R, et al. Clinical and genetic analysis of two Chinese families with vitamin D-dependent rickets type ⅠA and follow-up[J]. Orphanet J Rare Dis, 2020, 15(1): 273. DOI: 10.1186/s13023-020-01558-7.
[3]
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. DOI: 10.1038/gim.2015.30.
[4]
Pollard KS, Hubisz MJ, Rosenbloom KR, et al. Detection of nonneutral substitution rates on mammalian phylogenies[J]. Genome Res201020(1):110-121. DOI:10.1101/gr.097857.109.
[5]
Acar S, Demir K, Shi Y. Genetic causes of rickets[J]. J Clin Res Pediatr Endocrinol, 2017, 9(Suppl 2): 88-105. DOI: 10.4274/jcrpe.2017.S008.
[6]
Miller WL. Genetic disorders of vitamin D biosynthesis and degradation[J]. J Steroid Biochem Mol Biol, 2017, 165(Pt A): 101-108. DOI: 10.1016/j.jsbmb.2016.04.001.
[7]
Tiosano D, Abrams SA, Weisman Y. Lessons learned from hereditary 1,25-dihydroxyvitamin D-resistant rickets patients on vitamin D functions[J]. J Nutr, 2021, 151(3): 473-481. DOI: 10.1093/jn/nxaa380.
[8]
Tahir S, Demirbilek H, Ozbek MN, et al. Genotype and phenotype characteristics in 22 patients with vitamin D-dependent rickets type Ⅰ[J]. Horm Res Paediatr, 2016, 85(5): 309-317. DOI: 10.1159/000444483.
[9]
Karras SN, Wagner CL, Castracane VD. Understanding vitamin D metabolism in pregnancy: From physiology to pathophysiology and clinical outcomes[J]. Metab Clin Exp, 2018, 86: 112-123. DOI: 10.1016/j.metabol.2017.10.001.
[10]
Gembillo G, Cernaro V, Salvo A, et al. Role of vitamin D status in diabetic patients with renal disease[J]. Medicina (Kaunas), 2019, 55(6): 273. DOI: 10.3390/medicina55060273.
[11]
Edouard T, Alos N, Chabot G, et al. Short- and long-term outcome of patients with pseudo-vitamin D deficiency rickets treated with calcitriol[J]. J Clin Endocrinol Metab, 2011, 96(1): 82-89. DOI: 10.1210/jc.2010-1340.
[12]
苏尉,苏喆,徐明进. 维生素D依赖性佝偻病ⅠA型两例报告[J]. 中华骨质疏松和骨矿盐疾病杂志2020, 13(1): 49-54. DOI: 10.3969/j.issn.1674-2591.2020.01.008.
[13]
Michaus I, Rusińska A. Rare, genetically conditioned forms of rickets: Differential diagnosis and advances in diagnostics and treatment[J]. Clin Genet, 2018, 94(1): 103-114. DOI:10.1111/cge.13229.
[14]
Dursun F, Özgürhan G, Krmzbekmez H, et al. Genetic and clinical characteristics of patients with vitamin D dependent rickets type ⅠA[J]. J Clin Res Pediatr Endocrinol, 2019, 11(1): 34-40. DOI: 10.4274/jcrpe.galenos.2018.2018.0121.
[15]
Kim YM, Jang YY, Jeong JE, et al. A case of vitamin D hydroxylation-deficient rickets type 1A caused by 2 novel pathogenic variants in CYP27B1 gene[J]. Ann Pediatr Endocrinol Metab, 2019, 24(2): 137-141. DOI: 10.6065/apem.2019.24.2.137.
[16]
Zalewski A, Ma NS, Legeza B, et al. Vitamin D-dependent rickets type 1 caused by mutations in CYP27B1 affecting protein interactions with adrenodoxin[J]. J Clin Endocrinol Metab2016101(9):3409-3418. DOI:10.1210/jc.2016-2124
[17]
Cui N, Xia W, Su H, et al. Novel mutations of CYP27B1 gene lead to reduced activity of 1α-hydroxylase in Chinese patients[J]. Bone, 2012, 51(3): 563-569. DOI: 10.1016/j.bone.2012.05.006.
[18]
Al-Jaberi FAH, Kongsbak-Wismann M, Aguayo-Orozco A, et al. Impaired vitamin D signaling in T cells from a family with hereditary vitamin D resistant rickets[J]. Front Immunol, 2021, 12: 684015. DOI: 10.3389/fimmu.2021.684015.
[19]
Alzahrani AS, Zou M, Baitei EY, et al. A novel G102E mutation of CYP27B1 in a large family with vitamin D-dependent rickets type 1[J]. J Clin Endocrinol Metab, 2010, 95(9): 4176-4183. DOI: 10.1210/jc.2009-2278.
[20]
Chi Y, Sun J, Pang L, et al. Mutation update and long-term outcome after treatment with active vitamin D3 in Chinese patients with pseudovitamin D-deficiency rickets (PDDR)[J]. Osteoporos Int, 2019, 30(2): 481-489. DOI: 10.1007/s00198-018-4607-5.
[21]
Demir K, Kattan WE, Zou M, et al. Novel CYP27B1 gene mutations in patients with vitamin D-dependent rickets type 1A[J]. PLoS One, 2015, 10(7): e0131376. DOI: 10.1159/000446774.
[22]
Giannakopoulos A, Efthymiadou A, Chrysis D. A case of vitamin-D-dependent rickets type 1A with normal 1,25-dihydroxyvitamin D caused by two novel mutations of the CYP27B1 gene[J]. Horm Res Paediatr, 2017, 87(1): 58-63. DOI: 10.1159/000446774.
[23]
Cho JH, Kang E, Kim GH, et al. Long-term clinical outcome and the identification of homozygous CYP27B1 gene mutations in a patient with vitamin D hydroxylation-deficient rickets type 1A[J]. Ann Pediatr Endocrinol Metab, 2016, 21(3): 169-173. DOI: 10.6065/apem.2016.21.3.169.
[24]
Nishikawa M, Yasuda K, Takamatsu M, et al. Generation of 1,25-dihydroxyvitamin D in Cyp27b1 knockout mice by treatment with 25-hydroxyvitamin D rescued their rachitic phenotypes[J]. J Steroid Biochem Mol Biol, 2019, 185: 71-79. DOI: 10.1016/j.jsbmb.2018.07.012.
[1] 陈甜甜, 王晓东, 余海燕. 双胎妊娠合并Gitelman综合征孕妇的妊娠结局及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 559-568.
[2] 阚路兰, 田茂强, 唐一蜜. 以腹痛为首发症状的轻型Gitelman综合征患儿1例及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 473-479.
[3] 李聪, 徐艳, 吴铭, 丁瑞东, 王军. 极低出生体重儿出生时血清25-羟维生素D水平与其生后早期喂养不耐受关系的临床分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 309-314.
[4] 杨萍, 许世敏, 李亮亮, 尹向云, 锡洪敏, 马丽丽, 李向红. 早产儿支气管肺发育不良合并代谢性骨病的影响因素[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 202-211.
[5] 马铭秀, 徐锋, 谢铠岭, 郭亚明, 卢潼辉, 戴朝六. 术前碱性磷酸酶-前白蛋白比值对肝细胞癌切除术预后的评估价值[J]. 中华普通外科学文献(电子版), 2023, 17(02): 99-103.
[6] 袁育韬, 邢金琳, 谢克飞, 殷凯. CT征象及BRAFV600E基因突变与甲状腺乳头状癌中央区淋巴结转移的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 611-614.
[7] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[8] 方道成, 胡媛媛. 钙和维生素D与肾结石形成关系的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 653-656.
[9] 赵静涵, 陈玉龙, 张琛. 超声参数与UPJO致肾积水患儿肾功能的相关性分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 372-376.
[10] 杨晓健, 张炎, 冯嘉荣, 刘卓杰, 张浩. 先天性输精管缺如合并肾脏畸形三例CFTR基因突变检测并文献复习[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(02): 110-113.
[11] 宋昕, 耿涛, 刘长春. 老年下呼吸道感染者血清25-羟维生素D3水平与血清炎症因子水平的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 215-217.
[12] 丁倩, 王谦, 郭春彦, 张怡, 梁宇光. 基于SWOT分析法探讨儿科临床药师在药物临床研究中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 581-586.
[13] 王正宇, 孙琳. 硒联合不同药物治疗桥本甲状腺炎的研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 125-127.
[14] 王倩, 王永萍, 李新培, 杨成艳, 许慧, 孙凤娟, 刘亚平. 伴基因突变的低钾血症诊断学特征分析[J]. 中华诊断学电子杂志, 2023, 11(02): 115-119.
[15] 俞刘珍雄, 张康睿, 杨若蕊, 刘学春, 王龙, 吴竹青, 吴君仓. 维生素D水平与接受静脉溶栓治疗的缺血性卒中患者预后的关系[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 94-101.
阅读次数
全文


摘要