[1] |
Gjørup H, Beck-Nielsen SS, Haubek D. Craniofacial and dental characteristics of patients with vitamin-D-dependent rickets type 1A compared to controls and patients with X-linked hypophosphatemia[J]. Clin Oral Investig, 2018, 22(2): 745-755. DOI: 10.1007/s00784-017-2149-4.
|
[2] |
Li Y, Yuan X, Chen R, et al. Clinical and genetic analysis of two Chinese families with vitamin D-dependent rickets type ⅠA and follow-up[J]. Orphanet J Rare Dis, 2020, 15(1): 273. DOI: 10.1186/s13023-020-01558-7.
|
[3] |
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. DOI: 10.1038/gim.2015.30.
|
[4] |
Pollard KS, Hubisz MJ, Rosenbloom KR, et al. Detection of nonneutral substitution rates on mammalian phylogenies[J]. Genome Res, 2010, 20(1):110-121. DOI: 10.1101/gr.097857.109.
|
[5] |
Acar S, Demir K, Shi Y. Genetic causes of rickets[J]. J Clin Res Pediatr Endocrinol, 2017, 9(Suppl 2): 88-105. DOI: 10.4274/jcrpe.2017.S008.
|
[6] |
Miller WL. Genetic disorders of vitamin D biosynthesis and degradation[J]. J Steroid Biochem Mol Biol, 2017, 165(Pt A): 101-108. DOI: 10.1016/j.jsbmb.2016.04.001.
|
[7] |
Tiosano D, Abrams SA, Weisman Y. Lessons learned from hereditary 1,25-dihydroxyvitamin D-resistant rickets patients on vitamin D functions[J]. J Nutr, 2021, 151(3): 473-481. DOI: 10.1093/jn/nxaa380.
|
[8] |
Tahir S, Demirbilek H, Ozbek MN, et al. Genotype and phenotype characteristics in 22 patients with vitamin D-dependent rickets type Ⅰ[J]. Horm Res Paediatr, 2016, 85(5): 309-317. DOI: 10.1159/000444483.
|
[9] |
Karras SN, Wagner CL, Castracane VD. Understanding vitamin D metabolism in pregnancy: From physiology to pathophysiology and clinical outcomes[J]. Metab Clin Exp, 2018, 86: 112-123. DOI: 10.1016/j.metabol.2017.10.001.
|
[10] |
Gembillo G, Cernaro V, Salvo A, et al. Role of vitamin D status in diabetic patients with renal disease[J]. Medicina (Kaunas), 2019, 55(6): 273. DOI: 10.3390/medicina55060273.
|
[11] |
Edouard T, Alos N, Chabot G, et al. Short- and long-term outcome of patients with pseudo-vitamin D deficiency rickets treated with calcitriol[J]. J Clin Endocrinol Metab, 2011, 96(1): 82-89. DOI: 10.1210/jc.2010-1340.
|
[12] |
|
[13] |
Michaus I, Rusińska A. Rare, genetically conditioned forms of rickets: Differential diagnosis and advances in diagnostics and treatment[J]. Clin Genet, 2018, 94(1): 103-114. DOI: 10.1111/cge.13229.
|
[14] |
Dursun F, Özgürhan G, Krmzbekmez H, et al. Genetic and clinical characteristics of patients with vitamin D dependent rickets type ⅠA[J]. J Clin Res Pediatr Endocrinol, 2019, 11(1): 34-40. DOI: 10.4274/jcrpe.galenos.2018.2018.0121.
|
[15] |
Kim YM, Jang YY, Jeong JE, et al. A case of vitamin D hydroxylation-deficient rickets type 1A caused by 2 novel pathogenic variants in CYP27B1 gene[J]. Ann Pediatr Endocrinol Metab, 2019, 24(2): 137-141. DOI: 10.6065/apem.2019.24.2.137.
|
[16] |
Zalewski A, Ma NS, Legeza B, et al. Vitamin D-dependent rickets type 1 caused by mutations in CYP27B1 affecting protein interactions with adrenodoxin[J]. J Clin Endocrinol Metab, 2016, 101(9):3409-3418. DOI: 10.1210/jc.2016-2124
|
[17] |
Cui N, Xia W, Su H, et al. Novel mutations of CYP27B1 gene lead to reduced activity of 1α-hydroxylase in Chinese patients[J]. Bone, 2012, 51(3): 563-569. DOI: 10.1016/j.bone.2012.05.006.
|
[18] |
Al-Jaberi FAH, Kongsbak-Wismann M, Aguayo-Orozco A, et al. Impaired vitamin D signaling in T cells from a family with hereditary vitamin D resistant rickets[J]. Front Immunol, 2021, 12: 684015. DOI: 10.3389/fimmu.2021.684015.
|
[19] |
Alzahrani AS, Zou M, Baitei EY, et al. A novel G102E mutation of CYP27B1 in a large family with vitamin D-dependent rickets type 1[J]. J Clin Endocrinol Metab, 2010, 95(9): 4176-4183. DOI: 10.1210/jc.2009-2278.
|
[20] |
Chi Y, Sun J, Pang L, et al. Mutation update and long-term outcome after treatment with active vitamin D3 in Chinese patients with pseudovitamin D-deficiency rickets (PDDR)[J]. Osteoporos Int, 2019, 30(2): 481-489. DOI: 10.1007/s00198-018-4607-5.
|
[21] |
Demir K, Kattan WE, Zou M, et al. Novel CYP27B1 gene mutations in patients with vitamin D-dependent rickets type 1A[J]. PLoS One, 2015, 10(7): e0131376. DOI: 10.1159/000446774.
|
[22] |
Giannakopoulos A, Efthymiadou A, Chrysis D. A case of vitamin-D-dependent rickets type 1A with normal 1,25-dihydroxyvitamin D caused by two novel mutations of the CYP27B1 gene[J]. Horm Res Paediatr, 2017, 87(1): 58-63. DOI: 10.1159/000446774.
|
[23] |
Cho JH, Kang E, Kim GH, et al. Long-term clinical outcome and the identification of homozygous CYP27B1 gene mutations in a patient with vitamin D hydroxylation-deficient rickets type 1A[J]. Ann Pediatr Endocrinol Metab, 2016, 21(3): 169-173. DOI: 10.6065/apem.2016.21.3.169.
|
[24] |
Nishikawa M, Yasuda K, Takamatsu M, et al. Generation of 1,25-dihydroxyvitamin D in Cyp27b1 knockout mice by treatment with 25-hydroxyvitamin D rescued their rachitic phenotypes[J]. J Steroid Biochem Mol Biol, 2019, 185: 71-79. DOI: 10.1016/j.jsbmb.2018.07.012.
|