切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2022, Vol. 18 ›› Issue (01) : 30 -39. doi: 10.3877/cma.j.issn.1673-5250.2022.01.004

论著

高迁移率族蛋白1在子痫前期母胎界面表达及其对巨噬细胞的作用
邓茜茜, 徐婷婷, 詹泳池, 王晓东()   
  • 收稿日期:2021-11-18 修回日期:2022-01-10 出版日期:2022-02-01
  • 通信作者: 王晓东

Expression of high mobility group box 1 at maternal-fetal interface and its effect on macrophages in preeclampsia

Xixi Deng, Tingting Xu, Yongchi Zhan, Xiaodong Wang()   

  • Received:2021-11-18 Revised:2022-01-10 Published:2022-02-01
  • Corresponding author: Xiaodong Wang
  • Supported by:
    Science and Technology Plan Project by Science and Technology Department of Sichuan Province(2022YFS0042); Chengdu Science and Technology Project(2019-YF05-00711-SN)
引用本文:

邓茜茜, 徐婷婷, 詹泳池, 王晓东. 高迁移率族蛋白1在子痫前期母胎界面表达及其对巨噬细胞的作用[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(01): 30-39.

Xixi Deng, Tingting Xu, Yongchi Zhan, Xiaodong Wang. Expression of high mobility group box 1 at maternal-fetal interface and its effect on macrophages in preeclampsia[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2022, 18(01): 30-39.

目的

探究高迁移率族蛋白(HMGB)1在子痫前期(PE)母胎界面的表达及其对巨噬细胞的作用。

方法

选择2020年6月至2021年12月,在四川大学华西第二医院确诊为PE的24例单胎孕妇为研究对象。按照孕妇PE严重程度,将其分别纳入PE组(n=13)和重度PE(sPE)组(n=11)。按照随机数字表法,选择同期在本院剖宫产术分娩的正常妊娠孕妇纳入对照组(n=13)。采用免疫组织化学(IHC)法、蛋白质免疫印迹法(Western blotting)、实时荧光定量PCR(qPCR)检测3组患者胎盘蜕膜组织HMGB1相对表达水平。采用免疫磁珠富集法分离对照组原代蜕膜巨噬细胞,以不同剂量人重组HMGB1(rHMGB1)对其进行处理48 h,采用流式细胞术检测巨噬细胞表型变化。研究组与对照组PE孕妇年龄、产次等一般临床资料比较,差异均无统计学意义(P>0.05)。本研究遵循的程序符合四川大学华西第二医院伦理委员会规定,通过该伦理委员会审查,并获得批准[审批文号:2021(181)]。所有受试者均签署临床研究知情同意书。

结果

①HMGB1定位于细胞滋养层细胞、合体滋养层细胞和蜕膜基质细胞的细胞质及细胞核中。②经Western blotting检测sPE组、PE组和对照组HMGB1蛋白相对表达水平分别为3.10(1.50~5.14)、0.63(0.45~2.41)、0.72(0.07~1.49),3组总体比较,差异有统计学意义(χ2=9.222,P=0.010)。③IHC检测结果发现,sPE组、PE组和对照组HMGB1强阳性比例分别为54.6%(6/11)、30.8%(4/13)、0,3组总体比较,差异有统计学意义(χ2=15.024,P=0.001)。④sPE组、PE组和对照组HMGB1 mRNA相对表达水平分别为4.49±1.38、3.01±2.08、1.67±1.48,3组总体比较,差异有统计学意义(F=8.291,P=0.001),其中sPE组相对表达水平分别高于PE组及对照组,并且差异亦有统计学意义(P=0.039、P<0.001)。⑤原代胎盘蜕膜巨噬细胞纯度为97.39%,经rHMGB1处理后,M1型巨噬细胞百分比增加, M1型巨噬细胞标记CD86平均荧光强度(MFI)与rHMGB1含量与呈正相关关系(r=0.808,P<0.001)。

结论

PE母胎界面HMGB1表达增加,促进蜕膜巨噬细胞M1型极化,可能导致母胎界面炎性微环境。

Objective

To investigate the expression of high mobility group box (HMGB)1 at the maternal-fetal interface of pre-eclampsia (PE), and the possible regulatory effect on macrophage polarization.

Methods

Twenty-four singleton pregnant women admitted to the obstetrics clinic in West China Second University Hospital, Sichuan University from June 2020 to December 2021 were selected as research subjects. They were divided into PE group (n=37) and severe PE (sPE) group (n=11) based on diagnostic criteria for PE. In addition, 13 healthy pregnant women were selected as controls by the random number table method. Immunohistochemistry (IHC), Western blotting and quantitative real-time polymerase chain reaction (qPCR) were used to detect placental HMGB1 protein and mRNA levels. Decidual macrophages were isolated using immunomagnetic positive selection. Further polarization characteristics of macrophages were analyzed by flow cytometry (FCM) after being treated with various doses of recombinant human HMGB1 (rHMGB1). The procedure followed in this study was in accordance with the regulations of the Ethics Committee of West China Second University Hospital, Sichuan University, which was reviewed and approved [Approval No. 2021(181)]. Informed consent was obtained from each participant.

Results

①HMGB1 were observed both in the cytoplasm and nucleus of cytotrophoblast and decidual stromal cells. ②Western blotting showed that the relative expression levels of HMGB1 protein in sPE group, PE group and control group were 3.10 (1.50-5.14), 0.63 (0.45-2.41) and 0.72 (0.07-1.49), respectively, and the difference was statistically significant (χ2=9.222, P=0.010). ③The proportion of sPE, PE and control group strongly positive for HMGB1 was 54.6% (6/11), 30.08% (4/13) and 0, respectively, and the difference of HMGB1 was significant (χ2=15.024, P=0.001). ④The relative expression levels of HMGB1 mRNA in sPE group, PE group and control group were 4.49±1.38, 3.01±2.08 and 1.67±1.48, respectively. Compared with the three groups, the difference was statistically significant (F=8.291, P=0.001). The relative expression level of sPE group was higher than that of PE group and control group respectively, and both the differences were statistically significant (P=0.039, P<0.001). ⑤ The isolation purity of decidual macrophages was 97.39%. The percentage of M1-related marker (CD86+ ) increased after rHMGB intervention. The mean fluorescence intensity (MFI) of CD86 was positively correlated with rHMGB dose(r=0.808, P<0.001).

Conclusions

HMGB1 is significantly up-regulated at the maternal-fetal interface in women with preeclampsia. HMGB1 induces polarization of M1 macrophages and regulates inflammatory cytokines profile at the maternal-fetal interface.

表1 实时荧光定量PCR引物序列
表2 3组孕妇一般及相关临床资料比较
表3 3组胎盘蜕膜组织HMGB1蛋白及HMGB1 mRNA相对表达水平比较
图1 3组胎盘组织HMGB1蛋白相对表达水平(图1A:HMGB1电泳条带图;图1B:HMGB1相对表达水平柱状图)注:HMGB1为高迁移率族蛋白1,sPE为重度子痫前期,PE为子痫前期
图2 3组胎盘组织HMGB1 mRNA相对表达水平柱状图注:HMGB1为高迁移率族蛋白1,sPE为重度子痫前期,PE为子痫前期
图3 HMGB1表达及细胞定位(IHC)[图3A~3D: sPE组、PE组、对照组、阴性对照组胎盘蜕膜组织HMGB1的表达(×100);图3E:连续组织切片(蜕膜基质细胞标记波形蛋白表达定位,×200);图3F:连续组织切片(滋养层细胞标记角蛋白7表达定位,×200);图3G:连续组织切片(HMGB1表达定位,×200)]注:HMGB1为高迁移率族蛋白1,IHC为免疫组织化学染色
图4 原代胎盘蜕膜巨噬细胞鉴定流式细胞术散点图(图4A:根据FSC和SSC,筛选了表达CD14的均质细胞群;图4B:巨噬细胞同时表达CD68及CD14占97.39%;图4C:阴性对照,CD14单染、CD68单染对照及CD14、CD68双染对照)注: FSC表示正向散射,SSC表示侧向散射
图5 rHMGB1对蜕膜巨噬细胞M1型标记(CD86)诱导作用的流式细胞术示意图(图5A:空白处理;图5B:25 ng/mL rHMGB1处理;图5C:50 ng/mL rHMGB1处理;图5D:100 ng/mL rHMGB1处理;图5E:200 ng/mL rHMGB1处理;图5F:rHMGB1处理前)(红色矩形区域所示为M1型巨噬细胞阳性细胞比例)注: rHMGB1为重组高迁移率族蛋白1,FSC表示正向散射,SSC表示侧向散射
[1]
World Health Organization. WHO recommendations for prevention and treatment of pre-eclampsia and eclampsia[R]. Geneva: World Health Organization, 2011.
[2]
Jim B, Karumanchi SA. Preeclampsia: pathogenesis, prevention, and long-term complications[J]. Semin Nephrol, 2017, 37(4): 386-397. DOI: 10.1016/j.semnephrol.2017.05.011.
[3]
Staff AC, Johnsen GM, Dechend R, et al. Preeclampsia and uteroplacental acute atherosis: immune and inflammatory factors[J]. J Reprod Immunol, 2014, 101-102: 120-126. DOI: 10.1016/j.jri.2013.09.001.
[4]
Kang R, Chen R, Zhang Q, et al. HMGB1 in health and disease[J]. Mol Aspects Med, 2014, 40: 1-116. DOI: 10.1016/j.mam.2014.05.001.
[5]
Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal[J]. Nat Rev Immunol, 2005, 5(4): 331-342. DOI: 10.1038/nri1594.
[6]
Klune JR, Dhupar R, Cardinal J, et al. HMGB1: endogenous danger signaling [J]. Mol Med, 2008, 14(7-8): 476-484. DOI: 10.2119/2008-00034.Klune.
[7]
Okizaki S, Ito Y, Hosono K, et al. Suppressed recruitment of alternatively activated macrophages reduces TGF-β1 and impairs wound healing in streptozotocin-induced diabetic mice[J]. Biomed Pharmacother, 2015, 70: 317-325. DOI: 10.1016/j.biopha.2014.10.020.
[8]
Lash GE, Pitman H, Morgan HL, et al. Decidual macrophages: key regulators of vascular remodeling in human pregnancy[J]. J Leukoc Biol, 2016, 100(2): 315-325. DOI: 10.1189/jlb.1A0815-351R.
[9]
Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization[J]. Front Biosci, 2008, 13: 453-461. DOI: 10.2741/2692.
[10]
Svensson-Arvelund J, Mehta RB, Lindau R, et al. The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages[J]. J Immunol, 2015, 194(4): 1534-1544. DOI: 10.4049/jimmunol.1401536.
[11]
Yang SW, Cho EH, Choi SY, et al. DC-SIGN expression in Hofbauer cells may play an important role in immune tolerance in fetal chorionic villi during the development of preeclampsia[J]. J Reprod Immunol, 2017, 124: 30-37. DOI: 10.1016/j.jri.2017.09.012.
[12]
Girard S, Heazell AE, Derricott H, et al. Circulating cytokines and alarmins associated with placental inflammation in high-risk pregnancies[J]. Am J Reprod Immunol, 2014, 72(4): 422-434. DOI: 10.1111/aji.12274.
[13]
Wang B, Koga K, Osuga Y, et al. High mobility group box 1 (HMGB1) levels in the placenta and in serum in preeclampsia[J]. Am J Reprod Immunol, 2011, 66(2): 143-148. DOI: 10.1111/j.1600-0897.2010.00975.x.
[14]
Schonkeren D, van der Hoorn ML, Khedoe P, et al. Differential distribution and phenotype of decidual macrophages in preeclamptic versus control pregnancies[J]. Am J Pathol, 2011, 178(2): 709-717. DOI: 10.1016/j.ajpath.2010.10.011.
[15]
中华医学会妇产科学分会妊娠期高血压疾病学组. 妊娠期高血压疾病诊治指南(2020)[J]. 中华妇产科杂志2020, 55(4): 227-238. DOI: 10.3760/cma.j.cn112141-20200114-00039.
[16]
Maldonado-Estrada J, Menu E, Roques P, et al. Evaluation of Cytokeratin 7 as an accurate intracellular marker with which to assess the purity of human placental villous trophoblast cells by flow cytometry[J]. J Immunol Methods, 2004, 286(1-2): 21-34. DOI: 10.1016/j.jim.2003.03.001.
[17]
Madhukaran SP, Kishore U, Jamil K, et al. Decidual expression and localization of human surfactant protein SP-A and SP-D, and complement protein C1q[J]. Mol Immunol, 2015, 66(2): 197-207. DOI: 10.1016/j.molimm.2015.03.001.
[18]
Vishnyakova P, Elchaninov A, Fatkhudinov T, et al. Role of the monocyte-macrophage system in normal pregnancy and preeclampsia[J]. Int J Mol Sci, 2019, 20(15): 3695. DOI: 10.3390/ijms20153695.
[19]
Zhang YH, He M, Wang Y, et al. Modulators of the balance between M1 and M2 macrophages during pregnancy[J]. Front Immunol, 2017, 8: 120. DOI: 10.3389/fimmu.2017.00120.
[20]
Ge H, Roeder RG. The high mobility group protein HMG1 can reversibly inhibit class Ⅱ gene transcription by interaction with the TATA-binding protein[J]. J Biol Chem, 1994, 269(25): 17136-17140.
[21]
Andersson U, Yang H, Harris H. Extracellular HMGB1 as a therapeutic target in inflammatory diseases[J]. Expert Opin Ther Targets, 2018, 22(3): 263-277. DOI: 10.1080/14728222.2018.1439924.
[22]
Ramasamy R, Yan SF, Schmidt AM. Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications[J]. Ann N Y Acad Sci, 2011, 1243: 88-102. DOI: 10.1111/j.1749-6632.2011.06320.x.
[23]
Liu T, Son M, Diamond B. HMGB1 in systemic lupus erythematosus[J]. Front Immunol, 2020, 11: 1057. DOI: 10.3389/fimmu.2020.01057.
[24]
Jiang R, Cai J, Zhu Z, et al. Hypoxic trophoblast HMGB1 induces endothelial cell hyperpermeability via the TRL-4/caveolin-1 pathway[J]. J Immunol, 2014, 193(10): 5000-5012. DOI: 10.4049/jimmunol.1303445.
[25]
Chen B, Longtine MS, Nelson DM. Hypoxia induces autophagy in primary human trophoblasts[J]. Endocrinology, 2012, 153(10): 4946-4954. DOI: 10.1210/en.2012-1472.
[26]
Wang J, Li R, Peng Z, et al. HMGB1 participates in LPS-induced acute lung injury by activating the AIM2 inflammasome in macrophages and inducing polarization of M1 macrophages via TLR2, TLR4, and RAGE/NF-κB signaling pathways[J]. Int J Mol Med, 2020, 45(1): 61-80. DOI: 10.3892/ijmm.2019.4402.
[27]
Fan H, Tang HB, Chen Z, et al. Inhibiting HMGB1-RAGE axis prevents pro-inflammatory macrophages/microglia polarization and affords neuroprotection after spinal cord injury[J]. J Neuroinflammation, 2020, 17(1): 295. DOI: 10.1186/s12974-020-01973-4.
[28]
Shiau DJ, Kuo WT, Davuluri G, et al. Hepatocellular carcinoma-derived high mobility group box 1 triggers M2 macrophage polarization via a TLR2/NOX2/autophagy axis[J]. Sci Rep, 2020, 10(1): 13582. DOI: 10.1038/s41598-020-70137-4.
[29]
Son M, Porat A, He M, et al. C1q and HMGB1 reciprocally regulate human macrophage polarization[J]. Blood, 2016, 128(18): 2218-2228. DOI: 10.1182/blood-2016-05-719757.
[30]
Aplin JD, Myers JE, Timms K, et al. Tracking placental development in health and disease[J]. Nat Rev Endocrinol, 2020, 16(9): 479-494. DOI: 10.1038/s41574-020-0372-6.
[31]
Oda H, Nagamatsu T, Schust DJ, et al. Recombinant thrombomodulin attenuates preeclamptic symptoms by inhibiting high-mobility group box 1 in mice[J]. Endocrinology, 2021, 162(4): bqaa248. DOI: 10.1210/endocr/bqaa248.
[32]
Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia[J]. J Clin Invest, 2003, 111(5): 649-658. DOI: 10.1172/JCI17189.
[33]
Hu Y, Yan R, Zhang C, et al. High-mobility group box 1 from hypoxic trophoblasts promotes endothelial microparticle production and thrombophilia in preeclampsia[J]. Arterioscler Thromb Vasc Biol, 2018, 38(6): 1381-1391. DOI: 10.1161/ATVBAHA.118.310940.
[34]
Kim J, Lee KS, Kim JH, et al. Aspirin prevents TNF-α-induced endothelial cell dysfunction by regulating the NF-κB-dependent miR-155/eNOS pathway: role of a miR-155/eNOS axis in preeclampsia[J]. Free Radic Biol Med, 2017, 104: 185-198. DOI: 10.1016/j.freeradbiomed.2017.01.010.
[1] 齐新宇, 孔菲, 赵捷, 王海燕, 乔杰. 生殖医学中的免疫学临床研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 1-9.
[2] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[3] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[4] 尹娟, 杨兴, 李平, 徐旻馨, 鲍玉, 张志鹏, 薛慧. 低强度脉冲式超声波在脂多糖诱导的RAW264.7巨噬细胞分化中的抗炎和抗氧化作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 26-36.
[5] 张原, 李小龙, 王亚鹏. 胰腺癌中ANGPTL2蛋白与免疫抑制细胞浸润的关系及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 145-148.
[6] 张燕珍, 王锡携, 文小兰. 血清巨噬细胞迁移抑制因子对活动性肺结核分诊检测的意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 200-202.
[7] 刘燕, 叶亚萍, 郑艳莉. 干扰LINC00466通过miR-493-3p/MIF抑制子宫内膜癌RL95-2细胞恶性生物学行为[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 151-158.
[8] 沃吟晴, 杨向群. 心脏巨噬细胞的生理功能及在心肌梗死后的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 167-171.
[9] 刘晓梅, 张露, 刘旭, 梁蝶. 巨噬细胞迁移抑制因子靶向miR-127-3p对人肾癌细胞生物学行为的影响[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 76-83.
[10] 金艳盛, 董改琴, 李晓忠. 巨噬细胞在慢性肾脏病患者血管钙化中的作用与机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 234-237.
[11] 吴琼, 朱国贞. 膜性肾病中M2巨噬细胞相关基因的生物信息学分析[J]. 中华肾病研究电子杂志, 2023, 12(03): 156-162.
[12] 雷豆豆, 何浩强, 商怡丰, 郑立, 高明. 芒果苷对骨关节炎的潜在治疗机制:通过抑制巨噬细胞NF-κB调节巨噬细胞M2极化[J]. 中华老年骨科与康复电子杂志, 2023, 09(01): 33-38.
[13] 阳莹, 崔亚梅, 邵强, 赵宁, 陶文强, 陈家泉, 徐泽尧, 钱克俭, 刘芬. 线粒体自噬对肺泡巨噬细胞焦亡的调控作用及其机制[J]. 中华重症医学电子杂志, 2023, 09(01): 69-77.
[14] 白鲁岳, 赵思齐, 高升, 杨涛, 孟纯阳. 小胶质细胞极化在神经病理性疼痛发生发展过程中的作用研究进展[J]. 中华诊断学电子杂志, 2023, 11(01): 33-36.
[15] 李世浩, 王玉姣, 李子豪, 吴彬, 盛银良, 齐宇. 单细胞转录组分析巨噬细胞帽状蛋白对食管鳞癌细胞增殖和转移的影响[J]. 中华胸部外科电子杂志, 2023, 10(02): 98-105.
阅读次数
全文


摘要