[1] |
|
[2] |
Auger N, Bilodeau-Bertrand M, Poissant J, et al. Decreasing use of autopsy for stillbirths and infant deaths: missed opportunity[J]. J Perinatol, 2018, 38(10): 1414-1419. DOI: 10.1038/s41372-018-0191-y.
|
[3] |
De Sévaux JLH, Nikkels PGJ, Lequin MH, et al. The value of autopsy in neonates in the 21st century[J]. Neonatology, 2019, 115(1): 89-93. DOI: 10.1159/000493003.
|
[4] |
Lewis C, Hill M, Arthurs OJ, et al. Factors affecting uptake of postmortem examination in the prenatal, perinatal and paediatric setting[J]. BJOG, 2018, 125(2):172-181. DOI: 10.1111/1471-0528.14600.
|
[5] |
Meaney S, Gallagher S, Lutomski JE, et al. Parental decision making around perinatal autopsy: a qualitative investigation[J]. Health Expect, 2015, 18(6): 3160-3171. DOI: 10.1111/hex.12305.
|
[6] |
American College of Obstetricians and Gynecologists, Society for Maternal-Fetal Medicine, Metz TD, et al. Management of stillbirth. Obstetric care consensus No. 10[J]. Obstet Gynecol, 2020, 135(3): e110-e132. DOI: 10.1097/AOG.0000000000003719.
|
[7] |
Deng Y, Wang R, Zhou X, et al. Fetal, neonatal, and infant death in central China (Hubei): a 16-year retrospective study of forensic autopsy cases[J]. Medicine (Baltimore), 2019, 98(23): e15788. DOI: 10.1097/MD.0000000000015788.
|
[8] |
Venkataswamy C, Gurusamy U, Lakshmi SV. Second-trimester fetal autopsy: a morphological study with prenatal USG correlations and clinical implications[J]. J Lab Physicians, 2018, 10(3): 338-345. DOI: 10.4103/JLP.JLP_134_17.
|
[9] |
Xu CP, Ge XD, Li XL, et al. Clinical pathologic analysis for congenital malformations in 438 cases of fetal and perinatal autopsy[J]. J Third Mil Med Univ, 2012, 34(2): 113-115. DOI: 10.16016/j.1000-5404.2012.02.020.
|
[10] |
Miller ES, Minturn L, Linn R, et al. Stillbirth evaluation: a stepwise assessment of placental pathology and autopsy[J]. Am J Obstet Gynecol, 2016, 214(1): 115.e1-115.e6. DOI: 10.1016/j.ajog.2015.08.049.
|
[11] |
Gordijn SJ, Erwich JJ, Khong TY. Value of the perinatal autopsy: critique[J]. Pediatr Dev Pathol, 2002, 5(5): 480-488. DOI: 10.1007/s10024-002-0008-y.
|
[12] |
Duval H, Michel-Calemard L, Gonzales M, et al. Fetal anomalies associated with HNF1B mutations: report of 20 autopsy cases[J]. Prenat Diagn, 2016, 36(8):744-751. DOI: 10.1002/pd.4858.
|
[13] |
|
[14] |
Ptacek I, Sebire NJ, Man JA, et al. Systematic review of placental pathology reported in association with stillbirth[J]. Placenta, 2014, 35(8): 552-562. DOI: 10.1016/j.placenta.2014.05.011.
|
[15] |
|
[16] |
Khong TY, Mooney EE, Ariel I, et al. Sampling and definitions of placental lesions: amsterdam placental workshop group consensus statement[J]. Arch Pathol Lab Med, 2016, 140(7): 698-713. DOI: 10.5858/arpa.2015-0225-CC.
|
[17] |
Shen JD, Sun FX, Zhai DY, et al. Chromosome abnormality rate and related factors of spontaneous abortion in early pregnancy[J]. Chin J Obstet Gynecol, 2019, 54(12): 797-802. DOI: 10.3760/cma.j.issn.0529-567x.2019.12.002.
|
[18] |
Best S, Wou K, Vora N, et al. Promises, pitfalls and practicalities of prenatal whole exome sequencing[J]. Prenat Diagn, 2018, 38(1): 10-19. DOI: 10.1002/pd.5102.
|
[19] |
Armes JE, Williams M, Price G, et al. Application of whole genome sequencing technology in the investigation of genetic causes of fetal, perinatal, and early infant death[J]. Pediatr Dev Pathol, 2018, 21(1): 54-67. DOI: 10.1177/1093526617715528.
|
[20] |
Wojcik MH, Brodsky D, Stewart JE, et al. Peri-mortem evaluation of infants who die without a diagnosis: focus on advances in genomic technology[J]. J Perinatol, 2018, 38(9): 1125-1134. DOI: 10.1038/s41372-018-0187-7.
|
[21] |
Meng L, Pammi M, Saronwala A, et al. Use of exome sequencing for infants in intensive care units: ascertainment of severe single-gene disorders and effect on medical management[J]. JAMA Pediatr, 2017, 171(12): e173438. DOI: 10.1001/jamapediatrics.2017.3438.
|
[22] |
Matsika A, Gallagher R, Williams M, et al. DNA extraction from placental, fetal and neonatal tissue at autopsy: what organ to sample for DNA in the genomic era?[J]. Pathology, 2019, 51(7):705-710. DOI: 10.1016/j.pathol.2019.09.001.
|
[23] |
Shamseldin HE, Kurdi W, Almusafri F, et al. Molecular autopsy in maternal-fetal medicine[J]. Genet Med, 2018, 20(4): 420-427. DOI: 10.1038/gim.2017.111.
|
[24] |
Menendez C, Castillo P, Martínez MJ, et al. Validity of a minimally invasive autopsy for cause of death determination in stillborn babies and neonates in Mozambique: an observational study[J]. PLoS Med, 2017, 14(6):e1002318. DOI: 10.1371/journal.pmed.1002318.
|
[25] |
Breeze AC, Jessop FA, Whitehead AL, et al. Feasibility of percutaneous organ biopsy as part of a minimally invasive perinatal autopsy[J]. Virchows Arch, 2008, 452(2): 201-207. DOI: 10.1007/s00428-007-0548-7.
|
[26] |
Hutchinson JC, Shelmerdine SC, Lewis C, et al. Minimally invasive perinatal and pediatric autopsy with laparoscopically assisted tissue sampling: feasibility and experience of the minimal procedure[J]. Ultrasound Obstet Gynecol, 2019, 54(5): 661-669. DOI: 10.1002/uog.20211.
|
[27] |
Kang X, Shelmerdine SC, Hurtado I, et al. Postmortem examination of human fetuses: comparison of two-dimensional ultrasound with invasive autopsy[J]. Ultrasound Obstet Gynecol, 2019, 53(2): 229-238. DOI: 10.1002/uog.18828.
|
[28] |
Votino C, Cos Sanchez T, Bessieres B, et al. Minimally invasive fetal autopsy using ultrasound: a feasibility study[J]. Ultrasound Obstet Gynecol, 2018, 52(6): 776-783. DOI: 10.1002/uog.14642.
|
[29] |
Hutchinson JC, Kang X, Shelmerdine SC, et al. Postmortem microfocus computed tomography for early gestation fetuses: a validation study against conventional autopsy[J]. Am J Obstet Gynecol, 2018, 218(4): 445.e1-445.e12. DOI: 10.1016/j.ajog.2018.01.040.
|
[30] |
Shelmerdine SC, Gerrard CY, Rao P, et al. Joint European Society of Paediatric Radiology (ESPR) and International Society of Forensic Radiology and Imaging (ISFRI) guidelines: paediatric postmortem computed tomography imaging protocol[J]. Pediatr Radiol, 2019, 49(5):694-701. DOI: 10.1007/s00247-018-04340-x.
|
[31] |
Jalalzadeh H, Giannakopoulos GF, Berger FH, et al. Post-mortem imaging compared with autopsy in trauma victims: a systematic review[J]. Forensic Sci Int, 2015, 257: 29-48. DOI: 10.1016/j.forsciint.2015.07.026.
|
[32] |
|
[33] |
Shruthi M, Gupta N, Jana M, et al. Conventional vs virtual autopsy with postmortem MRI in phenotypic characterization of stillbirths and fetal malformations[J]. Ultrasound Obstet Gynecol, 2018, 51(2): 236-245. DOI: 10.1002/uog.17468.
|
[34] |
Ahmad MU, Sharif KA, Qayyum H, et al. Assessing the use of magnetic resonance imaging virtopsy as an alternative to autopsy: a systematic review and Meta-analysis[J]. Postgrad Med J, 2017, 93(1105): 671-678. DOI: 10.1136/postgradmedj-2017-134945.
|
[35] |
Jawad N, Sebire NJ, Wade A, et al. Body weight lower limits of fetal postmortem MRI at 1.5 T[J]. Ultrasound Obstet Gynecol, 2016, 48(1): 92-97. DOI: 10.1002/uog.14948.
|
[36] |
Arthurs OJ, Thayyil S, Pauliah SS, et al. Diagnostic accuracy and limitations of post-mortem MRI for neurological abnormalities in fetuses and children[J]. Clin Radiol, 2015, 70(8): 872-880. DOI: 10.1016/j.crad.2015.04.008.
|