切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2021, Vol. 17 ›› Issue (05) : 497 -502. doi: 10.3877/cma.j.issn.1673-5250.2021.05.001

专题论坛

维生素D及其类似物对肾脏病患儿的保护作用
尚慧, 陶于洪()   
  • 收稿日期:2021-05-01 修回日期:2021-09-11 出版日期:2021-10-01
  • 通信作者: 陶于洪

Protection effects of vitamin D and its analogues on children with pediatric kidney diseases

Hui Shang, Yuhong Tao()   

  • Received:2021-05-01 Revised:2021-09-11 Published:2021-10-01
  • Corresponding author: Yuhong Tao
  • Supported by:
    Applied Basic Research Project of Science & Technology Department of Sichuan Province(2017JY0076)
引用本文:

尚慧, 陶于洪. 维生素D及其类似物对肾脏病患儿的保护作用[J/OL]. 中华妇幼临床医学杂志(电子版), 2021, 17(05): 497-502.

Hui Shang, Yuhong Tao. Protection effects of vitamin D and its analogues on children with pediatric kidney diseases[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(05): 497-502.

维生素D是脂溶性维生素,通过其活性形式作用于维生素D受体(VDR)发挥作用。除了调节钙、磷代谢外,维生素D还具有免疫调节、抑制炎症、调节细胞生长分化、促进骨骼生长、抑制肿瘤细胞增殖等多种作用。肾脏病患儿普遍存在维生素D不足。笔者拟就维生素D及其类似物的分类,对肾脏病患儿的肾脏保护作用机制,如合理补充维生素D及其类似物可以通过抑制肾素-血管紧张素-醛固酮系统(RAAS)活性、保护足细胞、降低蛋白尿水平、缓解肾脏炎症、延缓肾脏纤维化和预防心血管疾病等多种机制,对肾脏病患儿肾脏发挥保护作用等进行阐述。

Vitamin D is a fat-soluble vitamin, which plays a role through its active forms acting on vitamin D receptor (VDR). In addition to the role of regulating calcium and phosphorus metabolism, vitamin D also has various nonclassical effects, such as immunoregulation, inhibiting inflammation, regulating cell growth and differentiation, promoting bone growth, anti-tumor cell proliferation and so on. Vitamin D deficiency is common in children with kidney disease. This paper intends to focus on the classification of vitamin D and its analogues, and their mechanisms of protecting pediatric kidney diseases, including inhibiting activity of renin-angiotensin-aldosterone system (RAAS), protecting podocytes, reducing proteinuria, relieving renal inflammation, delaying renal fibrosis, preventing cardiovascular diseases, and so on.

[5]
Lee SM, An WS. Supplementary nutrients for prevention of vascular calcification in patients with chronic kidney disease[J]. Korean J Intern Med, 2019, 34(3): 459-469. DOI: 10.3904/kjim.2019.125.
[6]
Hampson KJ, Gay ML, Band ME. Pediatric nephrotic syndrome: pharmacologic and nutrition management[J]. Nutr Clin Pract, 2021, 36(2): 331-343. DOI: 10.1002/ncp.10622.
[7]
Polderman N, Cushing M, McFadyen K, et al. Dietary intakes of children with nephrotic syndrome[J]. Pediatr Nephrol, 2021, 36(9): 2819-2826. DOI: 10.1007/s00467-021-05055-2.
[8]
Banerjee S, Basu S, Akhtar S, et al. Free vitamin D levels in steroid-sensitive nephrotic syndrome and healthy controls[J]. Pediatr Nephrol, 2020, 35(3): 447-454. DOI: 10.1007/s00467-019-04433-1.
[9]
Yang SP, Ong L, Loh TP, et al. Calcium, vitamin D, and bone derangement in nephrotic syndrome[J]. J Asean Fed Endocr Soc, 2021, 36(1): 50-55. DOI: 10.15605/jafes.036.01.12.
[10]
Szymczak-Pajor I, S'liwińska A. Analysis of association between vitamin D deficiency and insulin resistance[J]. Nutrients, 2019, 11(4): 794. DOI: 10.3390/nu11040794.
[11]
Lipińska-Opaka A, Tomaszewska A, Kubiak JZ, et al. Vitamin D and immunological patterns of allergic diseases in children[J]. Nutrients, 2021, 13(1): 177. DOI: 10.3390/nu13010177.
[12]
Yang S, Li A, Wang J, et al. Vitamin D receptor: a novel therapeutic target for kidney diseases[J]. Curr Med Chem, 2018, 25(27): 3256-3271. DOI: 10.2174/0929867325666180214122352.
[13]
Subandiyah K, Khanifa H, Kardani AK. Effect of corticosteroid and vitamin D3 as combined therapy on 25(OH) vitamin D serum level and regulatory T (Treg) cells population in children with idiopathic nephrotic syndrome[J]. Bali Med J, 2018, 7(3): 639-644. DOI: 10.15562/bmj.v7i3.769.
[14]
Song Z, Xiao C, Jia X, et al. Vitamin D/VDR protects against diabetic kidney disease by restoring podocytes autophagy[J]. Diabetes Metab Syndr Obes, 2021, 14: 1681-1693. DOI: 10.2147/Dmso.S303018.
[15]
Shi W, Guo L, Liu G, et al. Protective effect of calcitriol on podocytes in spontaneously hypertensive rat[J]. J Chin Med Assoc, 2018, 81(8): 691-698. DOI: 10.1016/j.jcma.2018.01.010.
[16]
Campbell KN, Tumlin JA. Protecting podocytes: a key target for therapy of focal segmental glomerulosclerosis[J]. Am J Nephrol, 2018, 47(Suppl 1): 14-29. DOI: 10.1159/000481634.
[17]
Zeier M, Reiser J. suPAR and chronic kidney disease-a podocyte story[J]. Pflugers Arch, 2017, 469(7-8): 1017-1020. DOI: 10.1007/s00424-017-2026-7.
[18]
Li Z, Wu N, Wang J, et al. Roles of endovascular calyx related enzymes in endothelial dysfunction and diabetic vascular complications[J]. Front Pharmacol, 2020, 11: 590614. DOI: 10.3389/fphar.2020.590614.
[19]
Masola V, Zaza G, Onisto M, et al. Heparanase: another renal player controlled by vitamin D[J]. J Pathol, 2016, 238(1): 7-9. DOI: 10.1002/path.4639.
[20]
Li XH, Huang XP, Pan L, et al. Vitamin D deficiency may predict a poorer outcome of IgA nephropathy[J]. BMC Nephrol, 2016, 17: 164. DOI: 10.1186/s12882-016-0378-4.
[21]
Deng J, Zheng X, Xie H, et al. Calcitriol in the treatment of IgA nephropathy with non-nephrotic range proteinuria: a Meta-analysis of randomized controlled trials[J]. Clin Nephrol, 2017, 87(1): 21-27. DOI: 10.5414/CN108915.
[22]
Yuan D, Fang Z, Sun F, et al. Effect of vitamin D and tacrolimus combination therapy on IgA nephropathy[J]. Med Sci Monit, 2017, 23: 3170-3177. DOI: 10.12659/msm.905073.
[23]
Zhao D, Zhang CJ, Yang R, et al. Effect of 1,25(OH)2D3 on the proliferation of human mesangial cells and their expression of Ki67[J]. Genet Mol Res, 2017, 16(2): gmr16029191. DOI: 10.4238/gmr16029191.
[24]
Xiaowei L, Bo W, Li L, et al. Comparison of the effects of valsartan plus activated vitamin D versus valsartan alone in IgA nephropathy with moderate proteinuria[J]. Int Urol Nephrol, 2020, 52(1): 129-136. DOI: 10.1007/s11255-019-02329-5.
[25]
Tamayo M, Manzanares E, Bas M, et al. Calcitriol (1,25-dihydroxyvitamin D3) increases L-type calcium current via protein kinase a signaling and modulates calcium cycling and contractility in isolated mouse ventricular myocytes[J]. Heart Rhythm, 2017, 14(3): 432-439. DOI: 10.1016/j.hrthm.2016.12.013.
[26]
Lin TC, Wu JY, Kuo ML, et al. Correlation between disease activity of pediatric-onset systemic lupus erythematosus and level of vitamin D in Taiwan: a case-cohort study[J]. J Microbiol Immunol Infect, 2018, 51(1): 110-114. DOI: 10.1016/j.jmii.2015.12.005.
[27]
Correa-Rodríguez M, Pocovi-Gerardino G, Callejas-Rubio JL, et al. Vitamin D levels are associated with disease activity and damage accrual in systemic lupus erythematosus patients[J]. Biol Res Nurs, 2021, 23(3): 455-463. DOI: 10.1177/1099800420983596.
[28]
Pérez-Ferro M, Romero-Bueno FI, Serrano Del Castillo C, et al. A subgroup of lupus patients with nephritis, innate T cell activation and low vitamin D is identified by the enhancement of circulating MHC class Ⅰ-related chain A[J]. Clin Exp Immunol, 2019, 196(3): 336-344. DOI: 10.1111/cei.13273.
[29]
Brunner HI, Bennett MR, Gulati G, et al. Urine biomarkers to predict response to lupus nephritis therapy in children and young adults[J]. J Rheumatol, 2017, 44(8): 1239-1248. DOI: 10.3899/jrheum.161128.
[30]
Yu Q, Qiao Y, Liu D, et al. Vitamin D protects podocytes from autoantibodies induced injury in lupus nephritis by reducing aberrant autophagy[J]. Arthritis Res Ther, 2019, 21(1): 19. DOI: 10.1186/s13075-018-1803-9.
[31]
Go DJ, Lee JY, Kang MJ, et al. Urinary vitamin D-binding protein, a novel biomarker for lupus nephritis, predicts the development of proteinuric flare[J]. Lupus, 2018, 27(10): 1600-1615. DOI: 10.1177/0961203318778774.
[32]
Kumar YA, Vivek K, Vinod K, et al. The effect of vitamin D supplementation on bone metabolic markers in chronic kidney disease[J]. J Bone Miner Res, 2018, 33(3): 404-409. DOI: 10.1002/jbmr.3314.
[33]
Lerch C, Shroff R, Wan M, et al. Effects of nutritional vitamin D supplementation on markers of bone and mineral metabolism in children with chronic kidney disease[J]. Nephrol Dial Transplant, 2018, 33(12): 2208-2217. DOI: 10.1093/ndt/gfy012.
[34]
Gluba-Brzózka A, Franczyk B, Ciakowska-Rysz A, et al. Impact of vitamin D on the cardiovascular system in advanced chronic kidney disease (CKD) and dialysis patients[J]. Nutrients, 2018, 10(6):709. DOI: 10.3390/nu10060709.
[35]
Dahan I, Thawho N, Farber E, et al. The iron-Klotho-VDR axis is a major determinant of proximal convoluted tubule injury in haptoglobin 2-2 genotype diabetic nephropathy patients and mice[J]. J Diabetes Res, 2018, 2018: 7163652. DOI: 10.1155/2018/7163652.
[36]
Imani PD, Aujo J, Kiguli S, et al. Chronic kidney disease impacts health-related quality of life of children in Uganda, East Africa[J]. Pediatr Nephrol, 2021, 36(2): 323-331. DOI: 10.1007/s00467-020-04705-1.
[1]
Gembillo G, Cernaro V, Salvo A, et al. Role of vitamin D status in diabetic patients with renal disease[J]. Medicinca (Kaunas), 2019, 55(6): 273. DOI: 10.3390/medicina55060273.
[2]
Melamed ML, Chonchol M, Gutiérrez OM, et al. The role of vitamin D in CKD stages 3 to 4: report of a scientific workshop sponsored by the national kidney foundation[J]. Am J Kidney Dis, 2018, 72(6): 834-845. DOI: 10.1053/j.ajkd.2018.06.031.
[3]
Baur AC, Brandsch C, Steinmetz B, et al. Differential effects of vitamin D3 vs vitamin D2 on cellular uptake, tissue distribution and activation of vitamin D in mice and cells[J]. J Steroid Biochem Mol Biol, 2020, 204: 105768. DOI: 10.1016/j.jsbmb.2020.105768.
[4]
Zhang T, Ju H, Chen H, et al. Comparison of paricalcitol and calcitriol in dialysis patients with secondary hyperparathyroidism: a Meta-analysis of randomized controlled studies[J]. Ther Apher Dial, 2019, 23(1): 73-79. DOI: 10.1111/1744-9987.12760.
[37]
Shroff R, Aitkenhead H, Costa N, et al. Normal 25-hydroxyvitamin D levels are associated with less proteinuria and attenuate renal failure progression in children with CKD[J]. J Am Soc Nephrol, 2016, 27(1): 314-322. DOI: 10.1681/ASN.2014090947.
[38]
Paydas S, Karaer R, Kara E. Pleiotrophic effects of vitamin D in proteinuric chronic kidney disease patients[J]. Turk Neph Dial Transpl, 2018, 27(1): 76-81. DOI: 10.5262/tndt.2018.1001.06.
[39]
Govender D, Damjanovic L, Gaza CA, et al. Vitamin D decreases silencer methylation to downregulate renin gene expression[J]. Gene, 2021, 786: 145623. DOI: 10.1016/j.gene.2021.145623.
[40]
Zhang YL, Qiao SK, Guo XN, et al. Arsenic trioxide-induced cell apoptosis and cell cycle arrest are potentiated by 1,25-dihydroxyvitamin D3 in human leukemia K562 cells[J]. Oncol Lett, 2021, 22(1): 509. DOI: 10.3892/ol.2021.12770.
[41]
Sergeev IN. Vitamin D status and vitamin D-dependent apoptosis in obesity[J]. Nutrients, 2020, 12(5): 1392. DOI: 10.3390/nu12051392.
[42]
Wu CC, Liao MT, Hsiao PJ, et al. Antiproteinuria effect of calcitriol in patients with chronic kidney disease and vitamin D deficiency: a randomized controlled study[J]. J Ren Nutr, 2020, 30(3): 200-207. DOI: 10.1053/j.jrn.2019.09.001.
[43]
Ahmed OM, Ali TM, Abdel Gaid MA, et al. Effects of enalapril and paricalcitol treatment on diabetic nephropathy and renal expressions of TNF-α,p53, caspase-3 and Bcl-2 in STZ-induced diabetic rats[J]. PLoS One, 2019, 14(9): e0214349. DOI: 10.1371/journal.pone.0214349.
[44]
Hamzawy M, Gouda S, Rashid L, et al. The cellular selection between apoptosis and autophagy: roles of vitamin D, glucose and immune response in diabetic nephropathy[J]. Endocrine, 2017, 58(1): 66-80. DOI: 10.1007/s12020-017-1402-6.
[45]
Galior K, Grebe S, Singh R. Development of vitamin D toxicity from overcorrection of vitamin D deficiency: a review of case reports[J]. Nutrients, 2018, 10(8): 953. DOI: 10.3390/nu10080953.
[46]
Marcinowska-Suchowierska E, Kupisz-Urbańska M, Łukaszkiewicz J, et al. Vitamin D toxicity-a clinical perspective[J]. Front Endocrinol (Lausanne), 2018, 9: 550. DOI: 10.3389/fendo.2018.00550.
[47]
Abdullah A, Hussain S, Rita A, et al. Vitamin D intoxication and nephrocalcinosis in a young breastfed infant[J]. Case Rep Endocrinol, 2021, 2021: 3286274. DOI: 10.1155/2021/3286274.
[1] 陶宏宇, 叶菁菁, 俞劲, 杨秀珍, 钱晶晶, 徐彬, 徐玮泽, 舒强. 右心声学造影在儿童右向左分流相关疾病中的评估价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 959-965.
[2] 张启龙, 柳亿, 卢会丽, 罗慧, 李成林, 王菁, 王辉. 奥妥珠单抗治疗磷脂酶A2受体相关膜性肾病的疗效与安全性:单中心回顾性分析[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 379-384.
[3] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[4] 向韵, 卢游, 杨凡. 全氟及多氟烷基化合物暴露与儿童肥胖症相关性研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 569-574.
[5] 刘冉佳, 崔向丽, 周效竹, 曲伟, 朱志军. 儿童肝移植受者健康相关生存质量评价的荟萃分析[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 302-309.
[6] 丁荷蓓, 王珣, 陈为国. 七氟烷吸入麻醉与异丙酚静脉麻醉在儿童腹股沟斜疝手术中的应用比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 570-574.
[7] 中华医学会器官移植学分会, 中华医学会外科学分会外科手术学学组, 中华医学会外科学分会移植学组, 华南劈离式肝移植联盟. 劈离式供肝儿童肝移植中国临床操作指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 593-601.
[8] 刘军, 丘文静, 孙方昊, 李松盈, 易述红, 傅斌生, 杨扬, 罗慧. 在体与离体劈离式肝移植在儿童肝移植中的应用比较[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 688-693.
[9] 程柏凯, 杨光. 高胰岛素-正葡萄糖钳夹技术评估慢性肾脏病患者胰岛素抵抗的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 334-339.
[10] 房桂彬, 肖进, 傅光涛, 郑秋坚. 老年髋部骨折患者术后1年行走能力的影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 273-280.
[11] 韩俊岭, 王刚, 马厉英, 连颖, 徐慧. 维生素D 联合匹维溴铵治疗腹泻型肠易激综合征患者疗效及对肠道屏障功能指标的影响研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 560-564.
[12] 张琛, 秦鸣, 董娟, 陈玉龙. 超声检查对儿童肠扭转缺血性改变的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 565-568.
[13] 奚培培, 周加军. 慢性肾脏病患者肌少症机制和诊治的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 491-495.
[14] 陈晓胜, 何佳, 刘方, 吴蕊, 杨海涛, 樊晓寒. 直立倾斜试验诱发31 秒心脏停搏的植入心脏起搏器儿童一例并文献复习[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 488-494.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?