切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2021, Vol. 17 ›› Issue (05) : 497 -502. doi: 10.3877/cma.j.issn.1673-5250.2021.05.001

专题论坛

维生素D及其类似物对肾脏病患儿的保护作用
尚慧, 陶于洪()   
  • 收稿日期:2021-05-01 修回日期:2021-09-11 出版日期:2021-10-01
  • 通信作者: 陶于洪

Protection effects of vitamin D and its analogues on children with pediatric kidney diseases

Hui Shang, Yuhong Tao()   

  • Received:2021-05-01 Revised:2021-09-11 Published:2021-10-01
  • Corresponding author: Yuhong Tao
  • Supported by:
    Applied Basic Research Project of Science & Technology Department of Sichuan Province(2017JY0076)
引用本文:

尚慧, 陶于洪. 维生素D及其类似物对肾脏病患儿的保护作用[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(05): 497-502.

Hui Shang, Yuhong Tao. Protection effects of vitamin D and its analogues on children with pediatric kidney diseases[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(05): 497-502.

维生素D是脂溶性维生素,通过其活性形式作用于维生素D受体(VDR)发挥作用。除了调节钙、磷代谢外,维生素D还具有免疫调节、抑制炎症、调节细胞生长分化、促进骨骼生长、抑制肿瘤细胞增殖等多种作用。肾脏病患儿普遍存在维生素D不足。笔者拟就维生素D及其类似物的分类,对肾脏病患儿的肾脏保护作用机制,如合理补充维生素D及其类似物可以通过抑制肾素-血管紧张素-醛固酮系统(RAAS)活性、保护足细胞、降低蛋白尿水平、缓解肾脏炎症、延缓肾脏纤维化和预防心血管疾病等多种机制,对肾脏病患儿肾脏发挥保护作用等进行阐述。

Vitamin D is a fat-soluble vitamin, which plays a role through its active forms acting on vitamin D receptor (VDR). In addition to the role of regulating calcium and phosphorus metabolism, vitamin D also has various nonclassical effects, such as immunoregulation, inhibiting inflammation, regulating cell growth and differentiation, promoting bone growth, anti-tumor cell proliferation and so on. Vitamin D deficiency is common in children with kidney disease. This paper intends to focus on the classification of vitamin D and its analogues, and their mechanisms of protecting pediatric kidney diseases, including inhibiting activity of renin-angiotensin-aldosterone system (RAAS), protecting podocytes, reducing proteinuria, relieving renal inflammation, delaying renal fibrosis, preventing cardiovascular diseases, and so on.

[5]
Lee SM, An WS. Supplementary nutrients for prevention of vascular calcification in patients with chronic kidney disease[J]. Korean J Intern Med, 2019, 34(3): 459-469. DOI: 10.3904/kjim.2019.125.
[6]
Hampson KJ, Gay ML, Band ME. Pediatric nephrotic syndrome: pharmacologic and nutrition management[J]. Nutr Clin Pract, 2021, 36(2): 331-343. DOI: 10.1002/ncp.10622.
[7]
Polderman N, Cushing M, McFadyen K, et al. Dietary intakes of children with nephrotic syndrome[J]. Pediatr Nephrol, 2021, 36(9): 2819-2826. DOI: 10.1007/s00467-021-05055-2.
[8]
Banerjee S, Basu S, Akhtar S, et al. Free vitamin D levels in steroid-sensitive nephrotic syndrome and healthy controls[J]. Pediatr Nephrol, 2020, 35(3): 447-454. DOI: 10.1007/s00467-019-04433-1.
[9]
Yang SP, Ong L, Loh TP, et al. Calcium, vitamin D, and bone derangement in nephrotic syndrome[J]. J Asean Fed Endocr Soc, 2021, 36(1): 50-55. DOI: 10.15605/jafes.036.01.12.
[10]
Szymczak-Pajor I, S'liwińska A. Analysis of association between vitamin D deficiency and insulin resistance[J]. Nutrients, 2019, 11(4): 794. DOI: 10.3390/nu11040794.
[11]
Lipińska-Opaka A, Tomaszewska A, Kubiak JZ, et al. Vitamin D and immunological patterns of allergic diseases in children[J]. Nutrients, 2021, 13(1): 177. DOI: 10.3390/nu13010177.
[12]
Yang S, Li A, Wang J, et al. Vitamin D receptor: a novel therapeutic target for kidney diseases[J]. Curr Med Chem, 2018, 25(27): 3256-3271. DOI: 10.2174/0929867325666180214122352.
[13]
Subandiyah K, Khanifa H, Kardani AK. Effect of corticosteroid and vitamin D3 as combined therapy on 25(OH) vitamin D serum level and regulatory T (Treg) cells population in children with idiopathic nephrotic syndrome[J]. Bali Med J, 2018, 7(3): 639-644. DOI: 10.15562/bmj.v7i3.769.
[14]
Song Z, Xiao C, Jia X, et al. Vitamin D/VDR protects against diabetic kidney disease by restoring podocytes autophagy[J]. Diabetes Metab Syndr Obes, 2021, 14: 1681-1693. DOI: 10.2147/Dmso.S303018.
[15]
Shi W, Guo L, Liu G, et al. Protective effect of calcitriol on podocytes in spontaneously hypertensive rat[J]. J Chin Med Assoc, 2018, 81(8): 691-698. DOI: 10.1016/j.jcma.2018.01.010.
[16]
Campbell KN, Tumlin JA. Protecting podocytes: a key target for therapy of focal segmental glomerulosclerosis[J]. Am J Nephrol, 2018, 47(Suppl 1): 14-29. DOI: 10.1159/000481634.
[17]
Zeier M, Reiser J. suPAR and chronic kidney disease-a podocyte story[J]. Pflugers Arch, 2017, 469(7-8): 1017-1020. DOI: 10.1007/s00424-017-2026-7.
[18]
Li Z, Wu N, Wang J, et al. Roles of endovascular calyx related enzymes in endothelial dysfunction and diabetic vascular complications[J]. Front Pharmacol, 2020, 11: 590614. DOI: 10.3389/fphar.2020.590614.
[19]
Masola V, Zaza G, Onisto M, et al. Heparanase: another renal player controlled by vitamin D[J]. J Pathol, 2016, 238(1): 7-9. DOI: 10.1002/path.4639.
[20]
Li XH, Huang XP, Pan L, et al. Vitamin D deficiency may predict a poorer outcome of IgA nephropathy[J]. BMC Nephrol, 2016, 17: 164. DOI: 10.1186/s12882-016-0378-4.
[21]
Deng J, Zheng X, Xie H, et al. Calcitriol in the treatment of IgA nephropathy with non-nephrotic range proteinuria: a Meta-analysis of randomized controlled trials[J]. Clin Nephrol, 2017, 87(1): 21-27. DOI: 10.5414/CN108915.
[22]
Yuan D, Fang Z, Sun F, et al. Effect of vitamin D and tacrolimus combination therapy on IgA nephropathy[J]. Med Sci Monit, 2017, 23: 3170-3177. DOI: 10.12659/msm.905073.
[23]
Zhao D, Zhang CJ, Yang R, et al. Effect of 1,25(OH)2D3 on the proliferation of human mesangial cells and their expression of Ki67[J]. Genet Mol Res, 2017, 16(2): gmr16029191. DOI: 10.4238/gmr16029191.
[24]
Xiaowei L, Bo W, Li L, et al. Comparison of the effects of valsartan plus activated vitamin D versus valsartan alone in IgA nephropathy with moderate proteinuria[J]. Int Urol Nephrol, 2020, 52(1): 129-136. DOI: 10.1007/s11255-019-02329-5.
[25]
Tamayo M, Manzanares E, Bas M, et al. Calcitriol (1,25-dihydroxyvitamin D3) increases L-type calcium current via protein kinase a signaling and modulates calcium cycling and contractility in isolated mouse ventricular myocytes[J]. Heart Rhythm, 2017, 14(3): 432-439. DOI: 10.1016/j.hrthm.2016.12.013.
[26]
Lin TC, Wu JY, Kuo ML, et al. Correlation between disease activity of pediatric-onset systemic lupus erythematosus and level of vitamin D in Taiwan: a case-cohort study[J]. J Microbiol Immunol Infect, 2018, 51(1): 110-114. DOI: 10.1016/j.jmii.2015.12.005.
[27]
Correa-Rodríguez M, Pocovi-Gerardino G, Callejas-Rubio JL, et al. Vitamin D levels are associated with disease activity and damage accrual in systemic lupus erythematosus patients[J]. Biol Res Nurs, 2021, 23(3): 455-463. DOI: 10.1177/1099800420983596.
[28]
Pérez-Ferro M, Romero-Bueno FI, Serrano Del Castillo C, et al. A subgroup of lupus patients with nephritis, innate T cell activation and low vitamin D is identified by the enhancement of circulating MHC class Ⅰ-related chain A[J]. Clin Exp Immunol, 2019, 196(3): 336-344. DOI: 10.1111/cei.13273.
[29]
Brunner HI, Bennett MR, Gulati G, et al. Urine biomarkers to predict response to lupus nephritis therapy in children and young adults[J]. J Rheumatol, 2017, 44(8): 1239-1248. DOI: 10.3899/jrheum.161128.
[30]
Yu Q, Qiao Y, Liu D, et al. Vitamin D protects podocytes from autoantibodies induced injury in lupus nephritis by reducing aberrant autophagy[J]. Arthritis Res Ther, 2019, 21(1): 19. DOI: 10.1186/s13075-018-1803-9.
[31]
Go DJ, Lee JY, Kang MJ, et al. Urinary vitamin D-binding protein, a novel biomarker for lupus nephritis, predicts the development of proteinuric flare[J]. Lupus, 2018, 27(10): 1600-1615. DOI: 10.1177/0961203318778774.
[32]
Kumar YA, Vivek K, Vinod K, et al. The effect of vitamin D supplementation on bone metabolic markers in chronic kidney disease[J]. J Bone Miner Res, 2018, 33(3): 404-409. DOI: 10.1002/jbmr.3314.
[33]
Lerch C, Shroff R, Wan M, et al. Effects of nutritional vitamin D supplementation on markers of bone and mineral metabolism in children with chronic kidney disease[J]. Nephrol Dial Transplant, 2018, 33(12): 2208-2217. DOI: 10.1093/ndt/gfy012.
[34]
Gluba-Brzózka A, Franczyk B, Ciakowska-Rysz A, et al. Impact of vitamin D on the cardiovascular system in advanced chronic kidney disease (CKD) and dialysis patients[J]. Nutrients, 2018, 10(6):709. DOI: 10.3390/nu10060709.
[35]
Dahan I, Thawho N, Farber E, et al. The iron-Klotho-VDR axis is a major determinant of proximal convoluted tubule injury in haptoglobin 2-2 genotype diabetic nephropathy patients and mice[J]. J Diabetes Res, 2018, 2018: 7163652. DOI: 10.1155/2018/7163652.
[36]
Imani PD, Aujo J, Kiguli S, et al. Chronic kidney disease impacts health-related quality of life of children in Uganda, East Africa[J]. Pediatr Nephrol, 2021, 36(2): 323-331. DOI: 10.1007/s00467-020-04705-1.
[1]
Gembillo G, Cernaro V, Salvo A, et al. Role of vitamin D status in diabetic patients with renal disease[J]. Medicinca (Kaunas), 2019, 55(6): 273. DOI: 10.3390/medicina55060273.
[2]
Melamed ML, Chonchol M, Gutiérrez OM, et al. The role of vitamin D in CKD stages 3 to 4: report of a scientific workshop sponsored by the national kidney foundation[J]. Am J Kidney Dis, 2018, 72(6): 834-845. DOI: 10.1053/j.ajkd.2018.06.031.
[3]
Baur AC, Brandsch C, Steinmetz B, et al. Differential effects of vitamin D3 vs vitamin D2 on cellular uptake, tissue distribution and activation of vitamin D in mice and cells[J]. J Steroid Biochem Mol Biol, 2020, 204: 105768. DOI: 10.1016/j.jsbmb.2020.105768.
[4]
Zhang T, Ju H, Chen H, et al. Comparison of paricalcitol and calcitriol in dialysis patients with secondary hyperparathyroidism: a Meta-analysis of randomized controlled studies[J]. Ther Apher Dial, 2019, 23(1): 73-79. DOI: 10.1111/1744-9987.12760.
[37]
Shroff R, Aitkenhead H, Costa N, et al. Normal 25-hydroxyvitamin D levels are associated with less proteinuria and attenuate renal failure progression in children with CKD[J]. J Am Soc Nephrol, 2016, 27(1): 314-322. DOI: 10.1681/ASN.2014090947.
[38]
Paydas S, Karaer R, Kara E. Pleiotrophic effects of vitamin D in proteinuric chronic kidney disease patients[J]. Turk Neph Dial Transpl, 2018, 27(1): 76-81. DOI: 10.5262/tndt.2018.1001.06.
[39]
Govender D, Damjanovic L, Gaza CA, et al. Vitamin D decreases silencer methylation to downregulate renin gene expression[J]. Gene, 2021, 786: 145623. DOI: 10.1016/j.gene.2021.145623.
[40]
Zhang YL, Qiao SK, Guo XN, et al. Arsenic trioxide-induced cell apoptosis and cell cycle arrest are potentiated by 1,25-dihydroxyvitamin D3 in human leukemia K562 cells[J]. Oncol Lett, 2021, 22(1): 509. DOI: 10.3892/ol.2021.12770.
[41]
Sergeev IN. Vitamin D status and vitamin D-dependent apoptosis in obesity[J]. Nutrients, 2020, 12(5): 1392. DOI: 10.3390/nu12051392.
[42]
Wu CC, Liao MT, Hsiao PJ, et al. Antiproteinuria effect of calcitriol in patients with chronic kidney disease and vitamin D deficiency: a randomized controlled study[J]. J Ren Nutr, 2020, 30(3): 200-207. DOI: 10.1053/j.jrn.2019.09.001.
[43]
Ahmed OM, Ali TM, Abdel Gaid MA, et al. Effects of enalapril and paricalcitol treatment on diabetic nephropathy and renal expressions of TNF-α,p53, caspase-3 and Bcl-2 in STZ-induced diabetic rats[J]. PLoS One, 2019, 14(9): e0214349. DOI: 10.1371/journal.pone.0214349.
[44]
Hamzawy M, Gouda S, Rashid L, et al. The cellular selection between apoptosis and autophagy: roles of vitamin D, glucose and immune response in diabetic nephropathy[J]. Endocrine, 2017, 58(1): 66-80. DOI: 10.1007/s12020-017-1402-6.
[45]
Galior K, Grebe S, Singh R. Development of vitamin D toxicity from overcorrection of vitamin D deficiency: a review of case reports[J]. Nutrients, 2018, 10(8): 953. DOI: 10.3390/nu10080953.
[46]
Marcinowska-Suchowierska E, Kupisz-Urbańska M, Łukaszkiewicz J, et al. Vitamin D toxicity-a clinical perspective[J]. Front Endocrinol (Lausanne), 2018, 9: 550. DOI: 10.3389/fendo.2018.00550.
[47]
Abdullah A, Hussain S, Rita A, et al. Vitamin D intoxication and nephrocalcinosis in a young breastfed infant[J]. Case Rep Endocrinol, 2021, 2021: 3286274. DOI: 10.1155/2021/3286274.
[1] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[2] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[3] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[4] 刘婷婷, 林妍冰, 汪珊, 陈幕荣, 唐子鉴, 代东伶, 夏焙. 超声衰减参数成像评价儿童代谢相关脂肪性肝病的价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 787-794.
[5] 周钰菡, 肖欢, 唐毅, 杨春江, 周娟, 朱丽容, 徐娟, 牟芳婷. 超声对儿童髋关节暂时性滑膜炎的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 795-800.
[6] 米洁, 陈晨, 李佳玲, 裴海娜, 张恒博, 李飞, 李东杰. 儿童头面部外伤特点分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 511-515.
[7] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[8] 方道成, 胡媛媛. 钙和维生素D与肾结石形成关系的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 653-656.
[9] 王蕾, 王少华, 牛海珍, 尹腾飞. 儿童腹股沟疝围手术期风险预警干预[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 768-772.
[10] 李芳, 许瑞, 李洋洋, 石秀全. 循证医学理念在儿童腹股沟疝患者中的应用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 782-786.
[11] 卓少宏, 林秀玲, 周翠梅, 熊卫莲, 马兴灶. CD64指数、SAA/CRP、PCT联合检测在小儿消化道感染性疾病鉴别诊断中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 505-509.
[12] 刘笑笑, 张小杉, 刘群, 马岚, 段莎莎, 施依璐, 张敏洁, 王雅晳. 中国学龄前儿童先天性心脏病流行病学研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1021-1024.
[13] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[14] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[15] 李静, 张玲玲, 邢伟. 兴趣诱导理念用于小儿手术麻醉诱导前的价值及其对家属满意度的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 812-817.
阅读次数
全文


摘要