切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2021, Vol. 17 ›› Issue (03) : 368 -372. doi: 10.3877/cma.j.issn.1673-5250.2021.03.020

综述

高氧诱导肺血管内皮细胞损伤与支气管肺发育不良的研究进展
王思思, 伍金林()   
  • 收稿日期:2020-06-21 修回日期:2021-05-14 出版日期:2021-06-01
  • 通信作者: 伍金林

Research progresses of hyperoxia-induced injury of pulmonary vascular endothelial cells in bronchopulmonary dysplasia

Sisi Wang, Jinlin Wu()   

  • Received:2020-06-21 Revised:2021-05-14 Published:2021-06-01
  • Corresponding author: Jinlin Wu
  • Supported by:
    Applied Basic Research Project of Science & Technology Department of Sichuan Province(2021YJ0211); Popularization Application Project of Health Commission of Sichuan Province(20PJ070)
引用本文:

王思思, 伍金林. 高氧诱导肺血管内皮细胞损伤与支气管肺发育不良的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(03): 368-372.

Sisi Wang, Jinlin Wu. Research progresses of hyperoxia-induced injury of pulmonary vascular endothelial cells in bronchopulmonary dysplasia[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(03): 368-372.

支气管肺发育不良(BPD)常见于需要氧疗的早产儿,而高氧应激反应的主要靶细胞为肺血管内皮细胞(PVEC)。笔者拟就高氧对PVEC的生理功能、代谢过程及PVEC内信号分子改变,在BPD发生、发展中作用的研究进展进行综述。

Bronchopulmonary dysplasia (BPD) is common in preterm infants who need oxygen therapy, and pulmonary vascular endothelial cells (PVEC) are the main target cells of hyperoxia stress response.This review focuses on the research progresses of physiological function, metabolic process and signal molecule changes of PVEC induced by hyperoxia in occurrence and development of BPD.

[1]
Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia[J]. N Engl J Med, 1967, 276(7): 357-368. DOI: 10.1056/NEJM196702162760701.
[2]
Merritt TA, Deming DD, Boynton BR. The ′new′ bronchopulmonary dysplasia: challenges and commentary[J]. Semin Fetal Neonatal Med, 2009, 14(6): 345-357. DOI: 10.1016/j.siny.2009.08.009.
[3]
Stoll BJ, Hansen NI, Bell EF, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012[J]. JAMA, 2015, 314(10): 1039-1051. DOI: 10.1001/jama.2015.10244.
[4]
Kolls JK. Commentary: understanding the impact of infection, inflammation and their persistence in the pathogenesis of bronchopulmonary dysplasia[J]. Front Med (Lausanne), 2017, 4: 24. DOI: 10.3389/fmed.2017.00024.
[5]
Balany J, Bhandari V. Understanding the impact of infection, inflammation, and their persistence in the pathogenesis of bronchopulmonary dysplasia[J]. Front Med (Lausanne), 2015, 2: 90. DOI: 10.3389/fmed.2015.00090.
[6]
Li T, Zha L, Luo H, et al. Galectin-3 mediates endothelial-to-mesenchymal transition in pulmonary arterial hypertension[J]. Aging Dis, 2019, 10(4): 731-745. DOI: 10.14336/AD.2018.1001.
[7]
Nakanishi H, Morikawa S, Kitahara S, et al. Morphological characterization of pulmonary microvascular disease in bronchopulmonary dysplasia caused by hyperoxia in newborn mice[J]. Med Mol Morphol, 2018, 51(3): 166-175. DOI: 10.1007/s00795-018-0182-2.
[8]
Li C, Fu J, Liu H, et al. Hyperoxia arrests pulmonary development in newborn rats via disruption of endothelial tight junctions and downregulation of Cx40[J]. Mol Med Rep, 2014, 10(1): 61-67. DOI: 10.3892/mmr.2014.2192.
[9]
李芳芳,魏学功,王霞,等. 高氧暴露对新生SD大鼠肺泡内白细胞介素-8及肿瘤坏死因子-α含量的影响[J/CD]. 中华妇幼临床医学杂志(电子版), 2016, 12(2):179-183.DOI: 10.3877/cma.j.issn.1673-5250.2016.02.009.
[10]
赵妍,孙耕耘,尤青海. TNF-α对肺微血管内皮细胞ERM蛋白表达的研究[J]. 中华急诊医学杂志2015, 24(6):612-616. DOI: 10.3760/cma.j.issn.1671-0282.2015.06.009.
[11]
Mong PY, Petrulio C, Kaufman HL, et al. Activation of Rho kinase by TNF-alpha is required for JNK activation in human pulmonary microvascular endothelial cells[J]. J Immunol, 2008, 180(1): 550-558. DOI: 10.4049/jimmunol.180.1.550.
[12]
Ghelfi E, Karaaslan C, Berkelhamer S, et al. Fatty acid-binding proteins and peribronchial angiogenesis in bronchopulmonary dysplasia[J]. Am J Respir Cell Mol Biol, 2011, 45(3): 550-556. DOI: 10.1165/rcmb.2010-0376OC.
[13]
Yao H, Gong J, Peterson AL, et al. Fatty acid oxidation protects against hyperoxia-induced endothelial cell apoptosis and lung injury in neonatal mice[J]. Am J Respir Cell Mol Biol, 2019, 60(6): 667-677. DOI: 10.1165/rcmb.2018-0335OC.
[14]
Dennery PA, Carr J, Peterson A, et al. The role of mitochondrial fatty acid use in neonatal lung injury and repair[J]. Trans Am Clin Climatol Assoc, 2018, 129: 195-201.
[15]
Henique C, Mansouri A, Fumey G, et al. Increased mitochondrial fatty acid oxidation is sufficient to protect skeletal muscle cells from palmitate-induced apoptosis[J]. J Biol Chem, 2010, 285(47): 36818-36827. DOI: 10.1074/jbc.M110.170431.
[16]
van Mastrigt E, Zweekhorst S, Bol B, et al. Ceramides in tracheal aspirates of preterm infants: marker for bronchopulmonary dysplasia[J]. PLoS One, 2018, 13(1): e0185969. DOI: 10.1371/journal.pone.0185969.
[17]
Audi SH, Jacobs ER, Zhao M, et al. In vivo detection of hyperoxia-induced pulmonary endothelial cell death using (99m)Tc-duramycin[J]. Nucl Med Biol, 2015, 42(1): 46-52. DOI: 10.1016/j.nucmedbio.2014.08.010.
[18]
Datta A, Kim GA, Taylor JM, et al. Mouse lung development and NOX1 induction during hyperoxia are developmentally regulated and mitochondrial ROS dependent[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(4): L369-L377. DOI: 10.1152/ajplung.00176.2014.
[19]
Schönauer R, Els-Heindl S, Beck-Sickinger AG. Adrenomedullin-new perspectives of a potent peptide hormone[J]. J Pept Sci, 2017, 23(7-8): 472-485. DOI: 10.1002/psc.2953.
[20]
Fernandez-Sauze S, Delfino C, Mabrouk K, et al. Effects of adrenomedullin on endothelial cells in the multistep process of angiogenesis: involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors[J]. Int J Cancer, 2004, 108(6): 797-804. DOI: 10.1002/ijc.11663.
[21]
Menon RT, Shrestha AK, Shivanna B. Hyperoxia exposure disrupts adrenomedullin signaling in newborn mice: implications for lung development in premature infants[J]. Biochem Biophys Res Commun, 2017, 487(3): 666-671. DOI: 10.1016/j.bbrc.2017.04.112.
[22]
刘丽平,庞璐璐,齐建光,等. 肾上腺髓质素对高肺血流大鼠肺组织氧化应激的调节作用[J]. 中国病理生理杂志2017, 33(4):735-739. DOI: 10.3969/j.issn.1000-4718.2017.04.026.
[23]
Zhang S, Patel A, Moorthy B, et al. Adrenomedullin deficiency potentiates hyperoxic injury in fetal human pulmonary microvascular endothelial cells[J]. Biochem Biophys Res Commun, 2015, 464(4): 1048-1053. DOI: 10.1016/j.bbrc.2015.07.067.
[24]
Chao CM, van den Bruck R, Lork S, et al. Neonatal exposure to hyperoxia leads to persistent disturbances in pulmonary histone signatures associated with NOS3 and STAT3 in a mouse model[J]. Clin Epigenetics, 2018, 10: 37. DOI: 10.1186/s13148-018-0469-0.
[25]
de Wijs-Meijler D, Duncker DJ, Danser A, et al. Changes in the nitric oxide pathway of the pulmonary vasculature after exposure to hypoxia in swine model of neonatal pulmonary vascular disease[J]. Physiol Rep, 2018, 6(20): e13889. DOI: 10.14814/phy2.13889.
[26]
Guo Q, Jin J, Yuan JX, et al. VEGF, Bcl-2 and Bad regulated by angiopoietin-1 in oleic acid induced acute lung injury[J]. Biochem Biophys Res Commun, 2011, 413(4): 630-636. DOI: 10.1016/j.bbrc.2011.09.015.
[27]
Meller S, Bhandari V. VEGF levels in humans and animal models with RDS and BPD: temporal relationships[J]. Exp Lung Res, 2012, 38(4): 192-203. DOI: 10.3109/01902148.2012.663454.
[28]
高原,刘花兰,包云光,等. 支气管肺发育不良早产儿肝细胞生长因子、血管内皮生长因子水平变化及其相关性[J/CD]. 中华妇幼临床医学杂志(电子版), 2015, 11(3):342-346. DOI: 10.3877/cma.j.issn.1673-5250.2015.03.012.
[29]
王玲,封志纯,吕回. 血管内皮生长因子和血管生成素-1在高氧诱导新生鼠支气管肺发育不良的表达及其对肺发育的影响[J]. 实用医学杂志2014, 30(4):525-527,528. DOI: 10.3969/j.issn.1006-5725.2014.04.008.
[30]
Chetty A, Bennett M, Dang L, et al. Pigment epithelium-derived factor mediates impaired lung vascular development in neonatal hyperoxia[J]. Am J Respir Cell Mol Biol, 2015, 52(3): 295-303. DOI: 10.1165/rcmb.2013-0229OC.
[31]
Zhang X, Lu A, Li Z, et al. Exosomes secreted by endothelial progenitor cells improve the bioactivity of pulmonary microvascular endothelial cells exposed to hyperoxia in vitro[J]. Ann Transl Med, 2019, 7(12): 254. DOI: 10.21037/atm.2019.05.10.
[32]
Chen Z, Yue SX, Zhou G, et al. ERK1 and ERK2 regulate chondrocyte terminal differentiation during endochondral bone formation[J]. J Bone Miner Res, 2015, 30(5): 765-774. DOI: 10.1002/jbmr.2409.
[33]
Menon RT, Shrestha AK, Barrios R, et al. Hyperoxia disrupts extracellular signal-regulated kinases 1/2-induced angiogenesis in the developing lungs[J]. Int J Mol Sci, 2018, 19(5): 1525. DOI: 10.3390/ijms19051525.
[34]
Yan B, Zhong W, He QM, et al. Expression of transforming growth factor-β1 in neonatal rats with hyperoxia-induced bronchopulmonary dysplasia and its relationship with lung development[J]. Genet Mol Res, 2016, 15(2): gmr.15028064. DOI: 10.4238/gmr.15028064.
[35]
Kunzmann S, Ottensmeier B, Speer CP, et al. Effect of progesterone on Smad signaling and TGF-β/Smad-regulated genes in lung epithelial cells[J]. PLoS One, 2018, 13(7): e0200661. DOI: 10.1371/journal.pone.0200661.
[36]
Goumans MJ, Valdimarsdottir G, Itoh S, et al. Balancing the activation state of the endothelium via two distinct TGF-beta type Ⅰ receptors[J]. EMBO J, 2002, 21(7): 1743-1753. DOI: 10.1093/emboj/21.7.1743.
[37]
Jin M, Lee J, Lee KY, et al. Alteration of TGF-β-ALK-Smad signaling in hyperoxia-induced bronchopulmonary dysplasia model of newborn rats[J]. Exp Lung Res, 2016, 42(7): 354-364. DOI: 10.1080/01902148.2016.1226448.
[38]
Sureshbabu A, Syed MA, Boddupalli CS, et al. Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung[J]. Respir Res, 2015, 16: 4. DOI: 10.1186/s12931-014-0162-6.
[39]
Charpentier MS, Taylor JM, Conlon FL. The CASZ1/Egfl7 transcriptional pathway is required for RhoA expression in vascular endothelial cells[J]. Small GTPases, 2013, 4(4): 231-235. DOI: 10.4161/sgtp.26849.
[40]
崔换金,黄为民,何嘉裕. 高氧暴露新生大鼠肺组织转录因子CASZ1的表达及其与肺微血管发育的关系[J]. 中华儿科杂志2016, 54(1):37-42. DOI: 10.3760/cma.j.issn.0578-1310.2016.01.009.
[41]
王利,张凯,朱建幸,等. 高氧暴露抑制新生小鼠肺血管内皮细胞Sox17的表达[J]. 中华围产医学杂志2015, 18(6):462-466. DOI: 10.3760/cma.j.issn.1007-9408.2015.06.015.
[42]
崔换金,何嘉裕,吴伟彬,等. 前B细胞集落增强因子在支气管肺发育不良新生大鼠肺组织中的表达及意义[J]. 广东医学2016, 37(4):499-503.
[43]
李秋平,马兴娜,马倩倩,等. 长期高氧暴露对新生小鼠肺微血管发育及Ephrin-B2表达的影响[J]. 中华围产医学杂志2016, 19(7):516-521. DOI: 10.3760/cma.j.issn.1007-9408.2016.07.008.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[3] 张璟璟, 赵博文, 潘美, 彭晓慧, 毛彦恺, 潘陈可, 朱玲艳, 朱琳琳, 蓝秋晔. 胎儿超声心动图测量McGoon指数在评价胎儿肺血管发育中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(08): 860-865.
[4] 罗刚, 泮思林, 陈涛涛, 许茜, 纪志娴, 王思宝, 孙玲玉. 超声心动图在胎儿心脏介入治疗室间隔完整的肺动脉闭锁中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(06): 605-609.
[5] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[6] 段燕, 郭欣, 吕慧芳, 王国利, 黄明光, 董英俊. 乳腺癌患者辅助化疗后感染肺孢子菌一例[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 318-321.
[7] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[8] 王晓燕, 肖佑, 肖戈, 王真权. 老年结直肠癌肺转移CT特征及高危因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 506-509.
[9] 任茂玲, 孙晓容, 何晓丽. CT引导下微波消融术在肺部结节治疗中的应用及术后并发症的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 718-720.
[10] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[11] 单秋洁, 孙立柱, 徐宜全, 王之霞, 徐妍, 马浩, 刘田田. 中老年食管癌患者调强放射治疗期间放射性肺损伤风险模型构建及应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 388-393.
[12] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[13] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[14] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[15] 孙培培, 张二明, 时延伟, 赵春燕, 宋萍萍, 张硕, 张克, 周玉娇, 赵璨, 闫维, 吴蓉菊, 宋丽萍, 郭伟安, 马石头, 安欣华, 包曹歆, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病患病情况及相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 711-719.
阅读次数
全文


摘要