切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2021, Vol. 17 ›› Issue (03) : 368 -372. doi: 10.3877/cma.j.issn.1673-5250.2021.03.020

综述

高氧诱导肺血管内皮细胞损伤与支气管肺发育不良的研究进展
王思思, 伍金林()   
  • 收稿日期:2020-06-21 修回日期:2021-05-14 出版日期:2021-06-01
  • 通信作者: 伍金林

Research progresses of hyperoxia-induced injury of pulmonary vascular endothelial cells in bronchopulmonary dysplasia

Sisi Wang, Jinlin Wu()   

  • Received:2020-06-21 Revised:2021-05-14 Published:2021-06-01
  • Corresponding author: Jinlin Wu
  • Supported by:
    Applied Basic Research Project of Science & Technology Department of Sichuan Province(2021YJ0211); Popularization Application Project of Health Commission of Sichuan Province(20PJ070)
引用本文:

王思思, 伍金林. 高氧诱导肺血管内皮细胞损伤与支气管肺发育不良的研究进展[J/OL]. 中华妇幼临床医学杂志(电子版), 2021, 17(03): 368-372.

Sisi Wang, Jinlin Wu. Research progresses of hyperoxia-induced injury of pulmonary vascular endothelial cells in bronchopulmonary dysplasia[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2021, 17(03): 368-372.

支气管肺发育不良(BPD)常见于需要氧疗的早产儿,而高氧应激反应的主要靶细胞为肺血管内皮细胞(PVEC)。笔者拟就高氧对PVEC的生理功能、代谢过程及PVEC内信号分子改变,在BPD发生、发展中作用的研究进展进行综述。

Bronchopulmonary dysplasia (BPD) is common in preterm infants who need oxygen therapy, and pulmonary vascular endothelial cells (PVEC) are the main target cells of hyperoxia stress response.This review focuses on the research progresses of physiological function, metabolic process and signal molecule changes of PVEC induced by hyperoxia in occurrence and development of BPD.

[1]
Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia[J]. N Engl J Med, 1967, 276(7): 357-368. DOI: 10.1056/NEJM196702162760701.
[2]
Merritt TA, Deming DD, Boynton BR. The ′new′ bronchopulmonary dysplasia: challenges and commentary[J]. Semin Fetal Neonatal Med, 2009, 14(6): 345-357. DOI: 10.1016/j.siny.2009.08.009.
[3]
Stoll BJ, Hansen NI, Bell EF, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012[J]. JAMA, 2015, 314(10): 1039-1051. DOI: 10.1001/jama.2015.10244.
[4]
Kolls JK. Commentary: understanding the impact of infection, inflammation and their persistence in the pathogenesis of bronchopulmonary dysplasia[J]. Front Med (Lausanne), 2017, 4: 24. DOI: 10.3389/fmed.2017.00024.
[5]
Balany J, Bhandari V. Understanding the impact of infection, inflammation, and their persistence in the pathogenesis of bronchopulmonary dysplasia[J]. Front Med (Lausanne), 2015, 2: 90. DOI: 10.3389/fmed.2015.00090.
[6]
Li T, Zha L, Luo H, et al. Galectin-3 mediates endothelial-to-mesenchymal transition in pulmonary arterial hypertension[J]. Aging Dis, 2019, 10(4): 731-745. DOI: 10.14336/AD.2018.1001.
[7]
Nakanishi H, Morikawa S, Kitahara S, et al. Morphological characterization of pulmonary microvascular disease in bronchopulmonary dysplasia caused by hyperoxia in newborn mice[J]. Med Mol Morphol, 2018, 51(3): 166-175. DOI: 10.1007/s00795-018-0182-2.
[8]
Li C, Fu J, Liu H, et al. Hyperoxia arrests pulmonary development in newborn rats via disruption of endothelial tight junctions and downregulation of Cx40[J]. Mol Med Rep, 2014, 10(1): 61-67. DOI: 10.3892/mmr.2014.2192.
[9]
李芳芳,魏学功,王霞,等. 高氧暴露对新生SD大鼠肺泡内白细胞介素-8及肿瘤坏死因子-α含量的影响[J/CD]. 中华妇幼临床医学杂志(电子版), 2016, 12(2):179-183.DOI: 10.3877/cma.j.issn.1673-5250.2016.02.009.
[10]
赵妍,孙耕耘,尤青海. TNF-α对肺微血管内皮细胞ERM蛋白表达的研究[J]. 中华急诊医学杂志2015, 24(6):612-616. DOI: 10.3760/cma.j.issn.1671-0282.2015.06.009.
[11]
Mong PY, Petrulio C, Kaufman HL, et al. Activation of Rho kinase by TNF-alpha is required for JNK activation in human pulmonary microvascular endothelial cells[J]. J Immunol, 2008, 180(1): 550-558. DOI: 10.4049/jimmunol.180.1.550.
[12]
Ghelfi E, Karaaslan C, Berkelhamer S, et al. Fatty acid-binding proteins and peribronchial angiogenesis in bronchopulmonary dysplasia[J]. Am J Respir Cell Mol Biol, 2011, 45(3): 550-556. DOI: 10.1165/rcmb.2010-0376OC.
[13]
Yao H, Gong J, Peterson AL, et al. Fatty acid oxidation protects against hyperoxia-induced endothelial cell apoptosis and lung injury in neonatal mice[J]. Am J Respir Cell Mol Biol, 2019, 60(6): 667-677. DOI: 10.1165/rcmb.2018-0335OC.
[14]
Dennery PA, Carr J, Peterson A, et al. The role of mitochondrial fatty acid use in neonatal lung injury and repair[J]. Trans Am Clin Climatol Assoc, 2018, 129: 195-201.
[15]
Henique C, Mansouri A, Fumey G, et al. Increased mitochondrial fatty acid oxidation is sufficient to protect skeletal muscle cells from palmitate-induced apoptosis[J]. J Biol Chem, 2010, 285(47): 36818-36827. DOI: 10.1074/jbc.M110.170431.
[16]
van Mastrigt E, Zweekhorst S, Bol B, et al. Ceramides in tracheal aspirates of preterm infants: marker for bronchopulmonary dysplasia[J]. PLoS One, 2018, 13(1): e0185969. DOI: 10.1371/journal.pone.0185969.
[17]
Audi SH, Jacobs ER, Zhao M, et al. In vivo detection of hyperoxia-induced pulmonary endothelial cell death using (99m)Tc-duramycin[J]. Nucl Med Biol, 2015, 42(1): 46-52. DOI: 10.1016/j.nucmedbio.2014.08.010.
[18]
Datta A, Kim GA, Taylor JM, et al. Mouse lung development and NOX1 induction during hyperoxia are developmentally regulated and mitochondrial ROS dependent[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(4): L369-L377. DOI: 10.1152/ajplung.00176.2014.
[19]
Schönauer R, Els-Heindl S, Beck-Sickinger AG. Adrenomedullin-new perspectives of a potent peptide hormone[J]. J Pept Sci, 2017, 23(7-8): 472-485. DOI: 10.1002/psc.2953.
[20]
Fernandez-Sauze S, Delfino C, Mabrouk K, et al. Effects of adrenomedullin on endothelial cells in the multistep process of angiogenesis: involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors[J]. Int J Cancer, 2004, 108(6): 797-804. DOI: 10.1002/ijc.11663.
[21]
Menon RT, Shrestha AK, Shivanna B. Hyperoxia exposure disrupts adrenomedullin signaling in newborn mice: implications for lung development in premature infants[J]. Biochem Biophys Res Commun, 2017, 487(3): 666-671. DOI: 10.1016/j.bbrc.2017.04.112.
[22]
刘丽平,庞璐璐,齐建光,等. 肾上腺髓质素对高肺血流大鼠肺组织氧化应激的调节作用[J]. 中国病理生理杂志2017, 33(4):735-739. DOI: 10.3969/j.issn.1000-4718.2017.04.026.
[23]
Zhang S, Patel A, Moorthy B, et al. Adrenomedullin deficiency potentiates hyperoxic injury in fetal human pulmonary microvascular endothelial cells[J]. Biochem Biophys Res Commun, 2015, 464(4): 1048-1053. DOI: 10.1016/j.bbrc.2015.07.067.
[24]
Chao CM, van den Bruck R, Lork S, et al. Neonatal exposure to hyperoxia leads to persistent disturbances in pulmonary histone signatures associated with NOS3 and STAT3 in a mouse model[J]. Clin Epigenetics, 2018, 10: 37. DOI: 10.1186/s13148-018-0469-0.
[25]
de Wijs-Meijler D, Duncker DJ, Danser A, et al. Changes in the nitric oxide pathway of the pulmonary vasculature after exposure to hypoxia in swine model of neonatal pulmonary vascular disease[J]. Physiol Rep, 2018, 6(20): e13889. DOI: 10.14814/phy2.13889.
[26]
Guo Q, Jin J, Yuan JX, et al. VEGF, Bcl-2 and Bad regulated by angiopoietin-1 in oleic acid induced acute lung injury[J]. Biochem Biophys Res Commun, 2011, 413(4): 630-636. DOI: 10.1016/j.bbrc.2011.09.015.
[27]
Meller S, Bhandari V. VEGF levels in humans and animal models with RDS and BPD: temporal relationships[J]. Exp Lung Res, 2012, 38(4): 192-203. DOI: 10.3109/01902148.2012.663454.
[28]
高原,刘花兰,包云光,等. 支气管肺发育不良早产儿肝细胞生长因子、血管内皮生长因子水平变化及其相关性[J/CD]. 中华妇幼临床医学杂志(电子版), 2015, 11(3):342-346. DOI: 10.3877/cma.j.issn.1673-5250.2015.03.012.
[29]
王玲,封志纯,吕回. 血管内皮生长因子和血管生成素-1在高氧诱导新生鼠支气管肺发育不良的表达及其对肺发育的影响[J]. 实用医学杂志2014, 30(4):525-527,528. DOI: 10.3969/j.issn.1006-5725.2014.04.008.
[30]
Chetty A, Bennett M, Dang L, et al. Pigment epithelium-derived factor mediates impaired lung vascular development in neonatal hyperoxia[J]. Am J Respir Cell Mol Biol, 2015, 52(3): 295-303. DOI: 10.1165/rcmb.2013-0229OC.
[31]
Zhang X, Lu A, Li Z, et al. Exosomes secreted by endothelial progenitor cells improve the bioactivity of pulmonary microvascular endothelial cells exposed to hyperoxia in vitro[J]. Ann Transl Med, 2019, 7(12): 254. DOI: 10.21037/atm.2019.05.10.
[32]
Chen Z, Yue SX, Zhou G, et al. ERK1 and ERK2 regulate chondrocyte terminal differentiation during endochondral bone formation[J]. J Bone Miner Res, 2015, 30(5): 765-774. DOI: 10.1002/jbmr.2409.
[33]
Menon RT, Shrestha AK, Barrios R, et al. Hyperoxia disrupts extracellular signal-regulated kinases 1/2-induced angiogenesis in the developing lungs[J]. Int J Mol Sci, 2018, 19(5): 1525. DOI: 10.3390/ijms19051525.
[34]
Yan B, Zhong W, He QM, et al. Expression of transforming growth factor-β1 in neonatal rats with hyperoxia-induced bronchopulmonary dysplasia and its relationship with lung development[J]. Genet Mol Res, 2016, 15(2): gmr.15028064. DOI: 10.4238/gmr.15028064.
[35]
Kunzmann S, Ottensmeier B, Speer CP, et al. Effect of progesterone on Smad signaling and TGF-β/Smad-regulated genes in lung epithelial cells[J]. PLoS One, 2018, 13(7): e0200661. DOI: 10.1371/journal.pone.0200661.
[36]
Goumans MJ, Valdimarsdottir G, Itoh S, et al. Balancing the activation state of the endothelium via two distinct TGF-beta type Ⅰ receptors[J]. EMBO J, 2002, 21(7): 1743-1753. DOI: 10.1093/emboj/21.7.1743.
[37]
Jin M, Lee J, Lee KY, et al. Alteration of TGF-β-ALK-Smad signaling in hyperoxia-induced bronchopulmonary dysplasia model of newborn rats[J]. Exp Lung Res, 2016, 42(7): 354-364. DOI: 10.1080/01902148.2016.1226448.
[38]
Sureshbabu A, Syed MA, Boddupalli CS, et al. Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung[J]. Respir Res, 2015, 16: 4. DOI: 10.1186/s12931-014-0162-6.
[39]
Charpentier MS, Taylor JM, Conlon FL. The CASZ1/Egfl7 transcriptional pathway is required for RhoA expression in vascular endothelial cells[J]. Small GTPases, 2013, 4(4): 231-235. DOI: 10.4161/sgtp.26849.
[40]
崔换金,黄为民,何嘉裕. 高氧暴露新生大鼠肺组织转录因子CASZ1的表达及其与肺微血管发育的关系[J]. 中华儿科杂志2016, 54(1):37-42. DOI: 10.3760/cma.j.issn.0578-1310.2016.01.009.
[41]
王利,张凯,朱建幸,等. 高氧暴露抑制新生小鼠肺血管内皮细胞Sox17的表达[J]. 中华围产医学杂志2015, 18(6):462-466. DOI: 10.3760/cma.j.issn.1007-9408.2015.06.015.
[42]
崔换金,何嘉裕,吴伟彬,等. 前B细胞集落增强因子在支气管肺发育不良新生大鼠肺组织中的表达及意义[J]. 广东医学2016, 37(4):499-503.
[43]
李秋平,马兴娜,马倩倩,等. 长期高氧暴露对新生小鼠肺微血管发育及Ephrin-B2表达的影响[J]. 中华围产医学杂志2016, 19(7):516-521. DOI: 10.3760/cma.j.issn.1007-9408.2016.07.008.
[1] 陶宏宇, 叶菁菁, 俞劲, 杨秀珍, 钱晶晶, 徐彬, 徐玮泽, 舒强. 右心声学造影在儿童右向左分流相关疾病中的评估价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 959-965.
[2] 农云洁, 黄小桂, 黄裕兰, 农恒荣. 超声在多重肺部感染诊断中的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 872-876.
[3] 吴义刚, 潘裕民, 吴姗姗, 胡梦涓, 王一为, 张劲松, 乔莉. 左西孟旦治疗肺动脉高压合并右心衰竭患者疗效分析——Meta 分析[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 385-391.
[4] 张秋阳, 余韶芸, 潘向滢, 金家佳, 夏桦, 赵雪红. 成年体外膜肺氧合患者出血影响因素的Meta 分析[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 392-398.
[5] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[6] 张胜伟, 孟召路, 热汗古丽·吾休尔, 万世森, 闫鹏, 阳乔. 肺炎支原体诱发反应性感染性皮疹黏膜疹一例[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 309-313.
[7] 犹成亿, 尤恒, 叶东樊, 张雯, 刘禹, 王仁宇, 苏琳茜, 甘慧, 徐智. 基于3D Res U-Net-Faster RCNN 技术和CT 影像学特征的肺结节性质预测模型的建立[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 673-679.
[8] 胥韦, 刘敏, 钟樟华, 裴艳丽, 荣磊. EBUS-TBNA 联合X 线透视下经支气管肺活检术在肺门及纵隔病变中的诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 680-684.
[9] 王丹, 李文思, 成苏杭, 吉泽, 朱祥, 郝春艳. Treg/Th17 及DC 细胞水平在COPD不同疾病进展期的表达及其与预后的关系[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 685-689.
[10] 刘一鸣, 温佳新, 赵恺, 薛志强. ⅢA 期肺腺癌新辅助治疗后胸腔镜右肺中下叶切除术[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 311-313.
[11] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[12] 贾玲玲, 滕飞, 常键, 黄福, 刘剑萍. 心肺康复在各种疾病中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 859-862.
[13] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[14] 李茂军, 唐彬秩, 吴青, 阳倩, 梁小明, 邹福兰, 黄蓉, 陈昌辉. 新生儿呼吸窘迫综合征的管理:多国指南/共识及RDS-NExT workshop 共识陈述简介和评价[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 607-617.
[15] 闫维, 张二明, 张克, 安欣华, 向平超. 北京市石景山区40岁及以上居民早期慢性阻塞性肺疾病异质性及影响因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 533-540.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?