[1] |
Bendifallah S, Ballester M, Daraï E. Endometrial cancer: predictive models and clinical impact[J]. Bull Cancer, 2017, 104(12): 1022-1031. DOI: 10.1016/j.bulcan.2017.06.017.
|
[2] |
Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019[J]. CA Cancer J Clin, 2019, 69(5): 363-385. DOI: 10.3322/caac.21565.
|
[3] |
Dou Y, Kawaler EA, Cui Zhou D, et al. Clinical proteomic tumor analysis consortium. proteogenomic characterization of endometrial carcinoma[J]. Cell, 2020, 180(4): 729.e26-748.e26. DOI: 10.1016/j.cell.2020.01.026.
|
[4] |
Guo CB, Tang YQ, Zhang YQ, et al. Mining TCGA data for key biomarkers related to immune microenvironment in endometrial cancer by immune score and weighted correlation network analysis[J].Front Mol Biosci, 2021, 8: 645388. DOI: 10.3389/fmolb.2021.645388.
|
[5] |
Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, et al. The Cancer Genome Atlas Pan-Cancer analysis project[J]. Nat Genet, 2013, 45(10): 1113-1120. DOI: 10.1038/ng.2764.
|
[6] |
Wang Z, Jensen MA, Zenklusen JC. A practical guide to The Cancer Genome Atlas (TCGA)[J]. Methods Mol Biol, 2016, 1418: 111-141. DOI: 10.1007/978-1-4939-3578-9_6.
|
[7] |
谢龙祥,闫中义,党艺方,等. TCGA数据库:海量癌症数据的源泉[J]. 河南大学学报(医学版), 2018, 37(3): 223-228.
|
[8] |
Law CW, Chen Y, Shi W, et al. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts[J]. Genome Biol, 2014, 15(2): R29. DOI: 10.1186/gb-2014-15-2-r29.
|
[9] |
Fan Yuan, Li Xingchen, Tian Li et al. Identification of a metabolism-related signature for the prediction of survival in endometrial cancer patients[J].Front Oncol, 2021, 11: 630905. DOI: 10.3389/fonc.2021.630905.
|
[10] |
Aggarwal A, Prinz-Wohlgenannt M, Tennakoon S, et al. The calcium-sensing receptor: a promising target for prevention of colorectal cancer[J]. Biochim Biophys Acta, 2015, 1853(9): 2158-2167. DOI: 10.1016/j.bbamcr.2015.02.011.
|
[11] |
Xi YB, Guo F, Xu ZL, et al. Radiomics signature: a potential biomarker for the prediction of MGMT promoter methylation in glioblastoma[J]. J Magn Reson Imaging, 2018, 47(5): 1380-1387. DOI: 10.1002/jmri.25860.
|
[12] |
Huang R, Liao X, Li Q. Identification and validation of potential prognostic gene biomarkers for predicting survival in patients with acute myeloid leukemia[J]. Onco Targets Ther, 2017, 10: 5243-5254. DOI: 10.2147/OTT.S147717.
|
[13] |
Gaudin F, Nasreddine S, Donnadieu AC, et al. Identification of the chemokine CX3CL1 as a new regulator of malignant cell proliferation in epithelial ovarian cancer[J]. PLoS One, 2011, 6(7): e21546. DOI: 10.1371/journal.pone.0021546.
|
[14] |
Constantine GD, Kessler G, Graham S, et al. Increased incidence of endometrial cancer following the women′s health initiative: an assessment of risk factors[J]. J Womens Health (Larchmt), 2019, 28(2): 237-243. DOI: 10.1089/jwh.2018.6956.
|
[15] |
Ravo M, Cordella A, Saggese P, et al. Identification of long non-coding RNA expression patterns useful for molecular-based classification of type Ⅰ endometrial cancers[J]. Oncol Rep, 2019, 41(2): 1209-1217. DOI: 10.3892/or.2018.6880.
|
[16] |
Mackay HJ, Eisenhauer EA, Kamel-Reid S, et al. Molecular determinants of outcome with mammalian target of rapamycin inhibition in endometrial cancer[J]. Cancer, 2014, 120(4): 603-610. DOI: 10.1002/cncr.28414.
|
[17] |
Wang F, Wang B, Long J, et al. Identification of candidate target genes for endometrial cancer, such as ANO1, using weighted gene co-expression network analysis[J]. Exp Ther Med, 2019, 17(1): 298-306. DOI: 10.3892/etm.2018.6965.
|
[18] |
Goebel EA, Vidal A, Matias-Guiu X, et al. The evolution of endometrial carcinoma classification through application of immunohistochemistry and molecular diagnostics: past, present and future[J]. Virchows Arch, 2018, 472(6): 885-896. DOI: 10.1007/s00428-017-2279-8.
|
[19] |
|
[20] |
Gu Y, Zhang M, Peng F, et al. The BRCA1/2-directed miRNA signature predicts a good prognosis in ovarian cancer patients with wild-type BRCA1/2[J]. Oncotarget, 2015, 6(4): 2397-2406. DOI: 10.18632/oncotarget.2963.
|
[21] |
Melling N, Rashed M, Schroeder C, et al. High-level γ-glutamyl-hydrolase (GGH) expression is linked to poor prognosis in ERG negative prostate cancer[J]. Int J Mol Sci, 2017, 18(2): 286. DOI: 10.3390/ijms18020286.
|
[22] |
Shubbar E, Helou K, Kovács A, et al. High levels of γ-glutamyl hydrolase (GGH) are associated with poor prognosis and unfavorable clinical outcomes in invasive breast cancer[J]. BMC Cancer, 2013, 13: 47. DOI: 10.1186/1471-2407-13-47.
|
[23] |
Wang W, Lim WK, Leong HS, et al. An eleven gene molecular signature for extra-capsular spread in oral squamous cell carcinoma serves as a prognosticator of outcome in patients without nodal metastases[J]. Oral Oncol, 2015, 51(4): 355-362. DOI: 10.1016/j.oraloncology.2014.12.012.
|
[24] |
Rutanen EM, Nyman T, Lehtovirta P, et al. Suppressed expression of insulin-like growth factor binding protein-1 mRNA in the endometrium: a molecular mechanism associating endometrial cancer with its risk factors[J]. Int J Cancer, 1994, 59(3): 307-312. DOI: 10.1002/ijc.2910590303.
|
[25] |
Naciff JM, Khambatta ZS, Thomason RG, et al. The genomic response of a human uterine endometrial adenocarcinoma cell line to 17alpha-ethynyl estradiol[J]. Toxicol Sci, 2009, 107(1): 40-55. DOI: 10.1093/toxsci/kfn219.
|
[26] |
Miyake H, Nelson C, Rennie PS, et al. Overexpression of insulin-like growth factor binding protein-5 helps accelerate progression to androgen-independence in the human prostate LNCaP tumor model through activation of phosphatidylinositol 3′-kinase pathway[J]. Endocrinology, 2000, 141(6): 2257-2265. DOI: 10.1210/endo.141.6.7520.
|
[27] |
Baron-Hay S, Boyle F, Ferrier A, et al. Elevated serum insulin-like growth factor binding protein-2 as a prognostic marker in patients with ovarian cancer[J]. Clin Cancer Res, 2004, 10(5): 1796-1806. DOI: 10.1158/1078-0432.ccr-0672-2.
|
[28] |
Xiao Z, He Y, Liu C, et al. Targeting P16INK4A in uterine serous carcinoma through inhibition of histone demethylation[J]. Oncol Rep, 2019, 41(5): 2667-2678. DOI: 10.3892/or.2019.7067.
|
[29] |
Davidson B, Abeler VM, Hellesylt E, et al. Gene expression signatures differentiate uterine endometrial stromal sarcoma from leiomyosarcoma[J]. Gynecol Oncol, 2013, 128(2): 349-355. DOI: 10.1016/j.ygyno.2012.11.021.
|
[30] |
Cai H, Xiang YB, Qu S, et al. Association of genetic polymorphisms in cell-cycle control genes and susceptibility to endometrial cancer among Chinese women[J]. Am J Epidemiol, 2011, 173(11): 1263-1271. DOI: 10.1093/aje/kwr002.
|
[31] |
Su L, Wang H, Miao J, et al. Clinicopathological significance and potential drug target of CDKN2A/p16 in endometrial carcinoma[J]. Sci Rep, 2015, 5: 13238. DOI: 10.1038/srep13238.
|
[32] |
Cancer Genome Atlas Research Network, Kandoth C, Schultz N, et al. Integrated genomic characterization of endometrial carcinoma[J]. Nature, 2013, 497(7447): 67-73. DOI: 10.1038/nature12113.
|
[33] |
Stelloo E, Bosse T, Nout RA, et al. Refining prognosis and identifying targetable pathways for high-risk endometrial cancer; a TransPORTEC initiative[J]. Mod Pathol, 2015, 28(6): 836-844. DOI: 10.1038/modpathol.2015.43.
|
[34] |
Zhang W, Gao L, Wang C, et al. Combining bioinformatics and experiments to identify and verify key genes with prognostic values in endometrial carcinoma[J]. J Cancer, 2020, 11(3): 716-732. DOI: 10.7150/jca.35854.
|
[35] |
He X, Lei S, Zhang Q, et al. Deregulation of cell adhesion molecules is associated with progression and poor outcomes in endometrial cancer: analysis of The Cancer Genome Atlas data[J]. Oncol Lett, 2020, 19(3): 1906-1914. DOI: 10.3892/ol.2020.11295.
|