切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2020, Vol. 16 ›› Issue (04) : 373 -380. doi: 10.3877/cma.j.issn.1673-5250.2020.04.001

所属专题: 文献

专题论坛

内质网应激及Wolframin蛋白质与妊娠相关疾病研究现状
徐婷婷1, 王晓东1,()   
  1. 1. 四川大学华西第二医院儿科、出生缺陷与相关妇儿疾病教育部重点实验室,成都 610041
  • 收稿日期:2020-01-03 修回日期:2020-06-30 出版日期:2020-08-01
  • 通信作者: 王晓东

Current research progresses of endoplasmic reticulum stress, Wolframin protein and pregnancy-related diseases

Tingting Xu1, Xiaodong Wang1,()   

  1. 1. Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2020-01-03 Revised:2020-06-30 Published:2020-08-01
  • Corresponding author: Xiaodong Wang
  • About author:
    Corresponding author: Wang Xiaodong, Email:
  • Supported by:
    National Natural Science Foundation of China(81571446)
引用本文:

徐婷婷, 王晓东. 内质网应激及Wolframin蛋白质与妊娠相关疾病研究现状[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(04): 373-380.

Tingting Xu, Xiaodong Wang. Current research progresses of endoplasmic reticulum stress, Wolframin protein and pregnancy-related diseases[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2020, 16(04): 373-380.

内质网应激(ERS)是细胞应激反应的核心环节。根据ERS持续时间,可将其分为急性ERS和慢性ERS 2种类型。根据诱发ERS的原因,可将其分为未折叠蛋白质反应(UPR)、内质网过度负荷反应(EOR)和固醇调节元件结合蛋白质(SREBP)通路调节反应3种类型。WFS1基因编码的跨膜糖蛋白质Wolframin蛋白质,是内质网上的常驻跨膜蛋白质,亦是参与调控ERS的蛋白质。目前,对ERS的研究主要集中在缺血缺氧、葡萄糖缺乏、脂质过度负荷、Ca2+紊乱等方面;对Wolframin蛋白质的相关研究,则主要集中在Wolfram综合征相应典型疾病,如糖尿病、视神经萎缩、双相情感障碍等方面。围生医学领域ERS与妊娠相关并发症密切相关,但是由于方法学等的滞涸,目前对ERS与子痫前期、妊娠期糖尿病(GDM)、妊娠期肝内胆汁淤积症等妊娠相关疾病研究的文献报道较少。笔者拟就激活ERS分类、Wolframin蛋白质与ERS关系,ERS介导的相应信号通路,Wolframin蛋白质在上述信号通路中的相应调控作用的最新研究等进行阐述,旨在为妊娠相关疾病的病理生理机制研究提供新的方向。

Endoplasmic reticulum stress (ERS) is the core of cellular stress response. It can be classified into acute ERS and chronic ERS depending on the duration of ERS. Besides, it also can be divided into unfolded protein reaction (UPR), endoplasmic reticulum overload response (EOR), and sterol-regulatory element binding protein (SREBP) according to the different inducements of ERS. Wolframin protein, an resident membrane glycoprotein of endoplasmic reticulum, plays a key role in regulating ERS to maintain endoplasmic reticulum homeostasis by affecting both gene transcription and protein translation. At present, researches on ERS are mainly focused on ischemia, hypoxia, glucose deficiency, lipid overload, calcium ion disorder, etc., while researches on Wolframin proteins are mainly focused on the typical diseases of Wolfram syndrome including diabetes mellitus, optic atrophy, and bipolar disorder. In the field of perinatal medicine, ERS is closely related to pregnancy-related complications. However, due to stagnation of methodology, there are few researches about ERS and pregnancy-related diseases, such as preeclampsia, gestational diabetes mellitus (GDM), intrahepatic cholestasis of pregnancy. Hence, we report the latest related research of the classification of ERS, the relationship between Wolframin proteins and ERS, the corresponding signaling pathways mediated by ERS, and corresponding regulatory role of Wolframin proteins in the above signaling pathways, in order to provide a new direction for the pathophysiological mechanism of pregnance-related diseases.

[1]
Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions [J]. J Clin Invest, 2005, 115(10): 2656-2664. DOI: 10.1172/JCI26373.
[2]
Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes [J]. Science, 2004, 306(5695): 457-461. DOI: 10.1126/science.1103160.
[3]
Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? [J]. Antioxid Redox Signal, 2007, 9(12): 2277-2293. DOI: 10.1089/ars.2007.1782.
[4]
Gardner BM, Pincus D, Gotthardt K, et al. Endoplasmic reticulum stress sensing in the unfolded protein response [J]. Cold Spring Harb Perspect Biol, 2013, 5(3): a013169. DOI: 10.1101/cshperspect.a013169.
[5]
Rutkowski DT, Kaufman RJ. That which does not kill me makes me stronger: adapting to chronic ER stress [J]. Trends Biochem Sci, 2007, 32(10): 469-476. DOI: 10.1016/j.tibs.2007.09.003.
[6]
马孝甜. 内质网应激介导的滋养细胞凋亡与子痫前期的发病关系的研究[D]. 南京:南京医科大学,2011.
[7]
Hammadi M, Oulidi A, Gackière F, et al. Modulation of ER stress and apoptosis by endoplasmic reticulum calcium leak via translocon during unfolded protein response: involvement of GRP78 [J]. FASEB J, 2013, 27(4): 1600-1609. DOI: 10.1096/fj.12-218875.
[8]
Wu J, Kaufman RJ. From acute ER stress to physiological roles of the unfolded protein response [J]. Cell Death Differ, 2006, 13(3): 374-384. DOI: 10.1038/sj.cdd.4401840.
[9]
Szegezdi E, Logue SE, Gorman AM, et al. Mediators of endoplasmic reticulum stress-induced apoptosis [J]. EMBO Rep, 2006, 7(9): 880-885. DOI: 10.1038/sj.embor.7400779.
[10]
Sarcinelli C, Dragic H, Piecyk M, et al. ATF4-dependent NRF2 transcriptional regulation promotes antioxidant protection during endoplasmic reticulum stress [J]. Cancers (Basel), 2020, 12(3): 569. DOI: 10.3390/cancers12030569.
[11]
Liu Z, Lv Y, Zhao N, et al. Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate [J]. Cell Death Dis, 2015, 6(7): e1822. DOI: 10.1038/cddis.2015.183.
[12]
Civelek M, Manduchi E, Riley RJ, et al. Chronic endoplasmic reticulum stress activates unfolded protein response in arterial endothelium in regions of susceptibility to atherosclerosis [J]. Circ Res, 2009, 105(5): 453-461. DOI: 10.1161/CIRCRESAHA.109.203711.
[13]
Haze K, Okada T, Yoshida H, et al. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response [J]. Biochem J, 2001, 355(Pt 1): 19-28. DOI: 10.1042/0264-6021:3550019.
[14]
Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress [J]. Nat Cell Biol, 2011, 13(3): 184-190. DOI: 10.1038/ncb0311-184.
[15]
Sun H, Wei G, Liu H, et al. Inhibition of XBP1s ubiquitination enhances its protein stability and improves glucose homeostasis [J]. Metabolism, 2020, 105: 154046. DOI: 10.1016/j.metabol.2019.154046.
[16]
Sicari D, Delaunay-Moisan A, Combettes L, et al. A guide to assessing endoplasmic reticulum homeostasis and stress in mammalian systems [J]. FEBS J, 2020, 287(1): 27-42. DOI: 10.1111/febs.15107.
[17]
Lin JH, Li H, Yasumura D, et al. IRE1 signaling affects cell fate during the unfolded protein response [J]. Science, 2007, 318(5852): 944-949. DOI: 10.1126/science.1146361.
[18]
Díaz-Hung ML, Martínez G, Hetz C. Emerging roles of the unfolded protein response (UPR) in the nervous system: a link with adaptive behavior to environmental stress? [J]. Int Rev Cell Mol Biol, 2020, 350(1): 29-61. DOI: 10.1016/bs.ircmb.2020.01.004.
[19]
Kaufman RJ. Orchestrating the unfolded protein response in health and disease [J]. J Clin Invest, 2002, 110(10): 1389-1398. DOI: 10.1172/JCI16886.
[20]
Kumar R, Azam S, Sullivan JM, et al. Brain ischemia and reperfusion activates the eukaryotic initiation factor 2alpha kinase, PERK [J]. J Neurochem, 2001, 77(5): 1418-1421. DOI: 10.1046/j.1471-4159.2001.00387.x.
[21]
Lin JH, Walter P, Yen TS. Endoplasmic reticulum stress in disease pathogenesis [J]. Annu Rev Pathol, 2008, 3: 399-425. DOI: 10.1146/annurev.pathmechdis.3.121806.151434.
[22]
Li Y, Guo Y, Tang J, et al. New insights into the roles of CHOP-induced apoptosis in ER stress [J]. Acta Biochim Biophys Sin (Shanghai), 2015, 47(2): 146-147. DOI: 10.1093/abbs/gmu128.
[23]
Szegezdi E, Fitzgerald U, Samali A. Caspase-12 and ER-stress-mediated apoptosis: the story so far [J]. Ann N Y Acad Sci, 2003, 1010(1): 186-194. DOI: 10.1196/annals.1299.032.
[24]
Inoue H, Tanizawa Y, Wasson J, et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome) [J]. Nat Genet, 1998, 20(2): 143-148. DOI: 10.1038/2441.
[25]
Morikawa S, Tajima T, Nakamura A, et al. A novel heterozygous mutation of the WFS1 gene leading to constitutive endoplasmic reticulum stress is the cause of Wolfram syndrome [J]. Pediatr Diabetes, 2017, 18(8): 934-941. DOI: 10.1111/pedi.12513.
[26]
Ivask M, Hugill A, Kõks S. RNA-sequencing of WFS1-deficient pancreatic islets [J]. Physiol Rep, 2016, 4(7): e12750. DOI: 10.14814/phy2.12750.
[27]
Yamaguchi S, Ishihara H, Tamura A, et al. Endoplasmic reticulum stress and N-glycosylation modulate expression of WFS1 protein [J]. Biochem Biophys Res Commun, 2004, 325(1): 250-256. DOI: 10.1016/j.bbrc.2004.10.017.
[28]
De Falco M, Manente L, Lucariello A, et al. Localization and distribution of wolframin in human tissues [J]. Front Biosci (Elite Ed), 2012, 4: 1986-1998. DOI: 10.2741/519.
[29]
Kovacs-Nagy R, Elek Z, Szekely A, et al. Association of aggression with a novel microRNA binding site polymorphism in the wolframin gene [J]. Am J Med Genet B Neuropsychiatr Genet, 2013, 162B(4): 404-412. DOI: 10.1002/ajmg.b.32157.
[30]
Kakiuchi C, Ishigaki S, Oslowski CM, et al. Valproate, a mood stabilizer, induces WFS1 expression and modulates its interaction with ER stress protein GRP94 [J]. PLoS One, 2009, 4(1): e4134. DOI: 10.1371/journal.pone.0004134.
[31]
Ueda K, Kawano J, Takeda K, et al. Endoplasmic reticulum stress induces WFS1 gene expression in pancreatic beta-cells via transcriptional activation [J]. Eur J Endocrinol, 2005, 153(1): 167-176. DOI: 10.1530/eje.1.01945.
[32]
Yamada T, Ishihara H, Tamura A, et al. WFS1-deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic beta-cells [J]. Hum Mol Genet, 2006, 15(10): 1600-1609. DOI: 10.1093/hmg/ddl081.
[33]
Fonseca SG, Fukuma M, Lipson KL, et al. WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta-cells [J]. J Biol Chem, 2005, 280(47): 39609-39615. DOI: 10.1074/jbc.M507426200.
[34]
Fonseca SG, Ishigaki S, Oslowski CM, et al. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells [J]. J Clin Invest, 2010, 120(3): 744-755. DOI: 10.1172/JCI39678.
[35]
Fonseca SG, Burcin M, Gromada J, et al. Endoplasmic reticulum stress in beta-cells and development of diabetes [J]. Curr Opin Pharmacol, 2009, 9(6): 763-770. DOI: 10.1016/j.coph.2009.07.003.
[36]
Kõks S, Soomets U, Paya-Cano JL, et al. WFS1 gene deletion causes growth retardation in mice and interferes with the growth hormone pathway [J]. Physiol Genomics, 2009, 37(3): 249-259. DOI: 10.1152/physiolgenomics.90407.2008.
[37]
Huopio H, Cederberg H, Vangipurapu J, et al. Association of risk variants for type 2 diabetes and hyperglycemia with gestational diabetes [J]. Eur J Endocrinol, 2013, 169(3): 291-297. DOI: 10.1530/EJE-13-0286.
[38]
De Franco E, Flanagan SE, Yagi T, et al. Dominant ER stress-inducing WFS1 mutations underlie a genetic syndrome of neonatal/infancy-onset diabetes, congenital sensorineural deafness, and congenital cataracts [J]. Diabetes, 2017, 66(7): 2044-2053. DOI: 10.2337/db16-1296.
[39]
Noormets K, Kõks S, Kavak A, et al. Male mice with deleted Wolframin (Wfs1) gene have reduced fertility [J]. Reprod Biol Endocrinol, 2009, 7:82. DOI: 10.1186/1477-7827-7-82.
[40]
Karna KK, Shin YS, Choi BR, et al. The Role of endoplasmic reticulum stress response in male reproductive physiology and pathology: a review[J]. World J Mens Health, 2019. DOI: 10.5534/wjmh.190038.
[41]
Domènech E, Kruyer H, Gómez C, et al. First prenatal diagnosis for Wolfram syndrome by molecular analysis of the WFS1 gene [J]. Prenat Diagn, 2004, 24(10): 787-789. DOI: 10.1002/pd.982.
[42]
Rugolo S, Mirabella D, Palumbo MA, et al. Complete Wolfram syndrome and successful pregnancy [J]. Eur J Obstet Gynecol Reprod Biol, 2002, 105(2): 192-193. DOI: 10.1016/s0301-2115(02)00150-1.
[43]
Lucariello A, Perna A, Sellitto C, et al. Modulation of wolframin expression in human placenta during pregnancy: comparison among physiological and pathological states [J]. Biomed Res Int, 2014, 2014: 985478. DOI: 10.1155/2014/985478.
[44]
Xu T, Zhou Z, Liu N, et al. Disrupted compensatory response mediated by Wolfram syndrome 1 protein and corticotrophin-releasing hormone family peptides in early-onset intrahepatic cholestasis pregnancy [J]. Placenta, 2019, 83(1): 63-71. DOI: 10.1016/j.placenta.2019.06.378.
[45]
WFS1 is prognostic, high expression is favourable in endometrial cancer [EB/OL]. [2020-01-11].

URL    
[46]
Berchuck A, Iversen ES, Lancaster JM, et al. Patterns of gene expression that characterize long-term survival in advanced stage serous ovarian cancers [J]. Clin Cancer Res, 2005, 11(10): 3686-3696. DOI: 10.1158/1078-0432.CCR-04-2398.
[47]
Chao S, Xiao JL, Haizhen W, et al. Lithocholic acid activates mTOR signaling inducing endoplasmic reticulum stress in placenta during intrahepatic cholestasis of pregnancy [J]. Life Sci, 2019, 218(2): 300-307. DOI: 10.1016/j.lfs.2018.12.050.
[1] 杨浩, 李毅, 梁琰. 硫化氢调控微小核糖核酸对内质网应激影响的研究进展[J]. 中华损伤与修复杂志(电子版), 2019, 14(04): 307-310.
[2] 邹明, 李毅. 硫化氢对组织损伤后内质网应激影响的研究进展[J]. 中华损伤与修复杂志(电子版), 2017, 12(05): 378-381.
[3] 杨思园, 李辉, 李鑫, 蒋荣猛, 马成杰, 魏红山, 李兴旺. TOLL样受体信号转导通路在内质网应激致炎症反应中的作用[J]. 中华实验和临床感染病杂志(电子版), 2017, 11(03): 222-227.
[4] 林锐钿, 李子涵, 古丽莎. 内质网应激在骨代谢及其稳态中的作用[J]. 中华口腔医学研究杂志(电子版), 2021, 15(05): 309-313.
[5] 邓凌钢, 孙建明, 陈晓峰. FBXO6介导的ERO1L泛素化降解对膀胱癌细胞增殖、迁移和侵袭的作用研究[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 153-160.
[6] 张翠荣. 脂联素通过PERK/eIF2a介导的内质网应激通路调节子宫内膜癌细胞增殖、凋亡和胰岛素敏感性[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(04): 240-245.
[7] 雷艳, 詹世淮, 陈俊秋, 董会月, 林榕, 陈津, 王水良, 黄梁浒. CHOP双重调控衣霉素诱导的DU-145细胞凋亡及自噬的研究[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(05): 257-263.
[8] 郭兆安, 孙丽娜. 内质网应激及药物干预对糖尿病肾病足细胞损伤的作用[J]. 中华肾病研究电子杂志, 2021, 10(02): 96-99.
[9] 苏晓乐, 闫冰娟, 乔晞, 王艳红, 王利华. 阿托伐他汀调控PERK/eIF2α/CHOP通路减轻造影剂诱导的大鼠肾小管上皮细胞凋亡[J]. 中华肾病研究电子杂志, 2019, 08(03): 102-108.
[10] 刘天喜, 宋琼, 许国双, 刘永鑫. X-盒结合蛋白1条件性基因敲除小鼠模型的建立[J]. 中华肾病研究电子杂志, 2019, 08(01): 13-18.
[11] 赵玉青, 柴颖儒, 江莉, 安国霞, 柴晏. 高糖环境对心血管系统的影响及尼可地尔在心血管疾病中的应用[J]. 中华临床医师杂志(电子版), 2017, 11(21): 2373-2376.
[12] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[13] 于露, 李永华. 线粒体相关内质网膜的生物学功能及其在相关疾病中作用的研究进展[J]. 中华诊断学电子杂志, 2022, 10(04): 284-288.
[14] 赵倩倩, 姜颖哲, 班博, 邵倩. 内质网应激相关基因调控骨生长发育的研究进展[J]. 中华诊断学电子杂志, 2018, 06(04): 286-288.
[15] 李祖寅, 周志杰, 晏滨, 王晓亮. 内质网应激在非酒精性脂肪肝病中的作用[J]. 中华肥胖与代谢病电子杂志, 2020, 06(02): 122-126.
阅读次数
全文


摘要