[1] |
Siegel R, DeSantis C, Jemal A. Colorectal cancer statistics, 2014 [J]. CA Cancer J Clin, 2014, 64(2): 104-117. DOI: 10.3322/caac.21220.
|
[2] |
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 [J]. Int J Cancer, 2015, 136(5): E359-E386. DOI: 10.1002/ijc.29210.
|
[3] |
Wu GG, Zhou LQ, Xu JW, et al. Artificial intelligence in breast ultrasound [J]. World J Radiol, 2019, 11(2): 19. DOI: 10.4329/wjr.v11.i2.19.
|
[4] |
Sepandi M, Taghdir M, Rezaianzadeh A, et al. Assessing breast cancer risk with an artificial neural network [J]. Asian Pac J Cancer Prev, 2018, 19(4): 1017. DOI: 10.22034/APJCP.2018.19.4.1017.
|
[5] |
Zain NM, Chelliah KK. Breast imaging using electrical impedance tomography: correlation of quantitative assessment with visual interpretation [J]. Asian Pac J Cancer Prev, 2014, 15(3): 1327-1331. DOI: 10.7314/APJCP.2014.15.3.1327.
|
[6] |
Shen WC, Chang RF, Moon WK, et al. Breast ultrasound computer-aided diagnosis using BI-RADS features [J]. Acad Radiol, 2007, 14(8): 928-939. DOI: 10.1016/j.acra.2007.04.016.
|
[7] |
EI-Naqa I, Yang Y, Wernick MN, et al. A support vector machine approach for detection of microcalcifications [J]. IEEE Trans Med Imaging, 2002, 21(12): 1552-1563. DOI: 10.1109/TMI.2002.806569.
|
[8] |
Marmot MG, Altman DG, Cameron DA, et al. The benefits and harms of breast cancer screening: an independent review [J]. Br J Cancer, 2013, 108(11): 2205-2240. DOI: 10.1038/bjc.2013.177.
|
[9] |
Ciritsis A, Rossi C, Eberhard M, et al. Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making [J]. Eur Radiol, 2019, 29(10): 5458-5468. DOI: 10.1007/s00330-019-06118-7.
|
[10] |
Fujioka T, Kubota K, Mori M, et al. Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network [J]. Jap J Radiol, 2019, 37(6): 466-472. DOI: 10.1007/s11604-019-00831-5.
|
[11] |
|
[12] |
Han S, Kang HK, Jeong JY, et al. A deep learning framework for supporting the classification of breast lesions in ultrasound images [J]. Phys Med Biol, 2017, 62(19): 7714-7728. DOI: 10.1088/1361-6560/aa82ec.
|
[13] |
Lo CM, Chang RF. Intelligent diagnosis of breast cancer based on quantitative B-mode and elastography features//Artificial intelligence in decision support systems for diagnosis in medical imaging [M]. Switzerland: Springer, Cham, 2018: 165-191. DOI: 10.1007/978-3-319-68843-5.
|
[14] |
Moon WK, Chang SC, Huang CS, et al. Breast tumor classification using fuzzy clustering for breast elastography [J]. Ultrasound Med Biol, 2011, 37(5): 700-708. DOI: 10.1016/j.ultrasmedbio.2011.02.003.
|
[15] |
Chang SC, Lai YC, Chou YH, et al. Breast elastography diagnosis based on dynamic sequence features [J]. Med Phys, 2013, 40(2): 022905. DOI: 10.1118/1.4788652.
|
[16] |
Marcomini K, Fleury E, Oliveira V, et al. Evaluation of a computer-aided diagnosis system in the classification of lesions in breast strain elastography imaging [J]. Bioengineering (Basel), 2018, 5(3): 62. DOI: 10.3390/bioengineering5030062.
|
[17] |
Zhang Q, Song S, Xiao Y, et al. Dual-mode artificially-intelligent diagnosis of breast tumours in shear-wave elastography and B-mode ultrasound using deep polynomial networks [J]. Med Eng Phys, 2019, 64(1): 1-6. DOI: 10.1016/j.medengphy.2018.12.005.
|
[18] |
Kelly KM, Dean J, Comulada WS, et al. Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts [J]. Eur Radiol, 2010, 20(3): 734-742. DOI: 10.1007/s00330-009-1588-y.
|
[19] |
Moon WK, Shen YW, Huang CS, et al. Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images [J]. Ultrasound Med Biol, 2011, 37(4): 539-548. DOI: 10.1016/j.ultrasmedbio.2011.01.006.
|
[20] |
Lo C, Shen YW, Huang CS, et al. Computer-aided multiview tumor detection for automated whole breast ultrasound [J]. Ultrason Imaging, 2014, 36(1): 3-17. DOI: 10.1177/0161734613507240.
|
[21] |
Chiang TC, Huang YS, Chen RT, et al. Tumor detection in automated breast ultrasound using 3-D CNN and prioritized candidate aggregation [J]. IEEE Trans Med Imaging, 2019, 38(1): 240-249. DOI: 10.1109/tmi.2018.2860257.
|
[22] |
Tran WT, Jerzak K, Lu FI, et al. Personalized breast cancer treatments using artificial intelligence in radiomics and pathomics [J]. J Med Imaging Radiat Sci, 2019, 50(4 Suppl 2): S32-S41. DOI: 10.1016/j.jmir.2019.07.010.
|
[23] |
Nasief HG, Rosado-Mendez IM, Zagzebski JA, et al. A quantitative ultrasound-based multi-parameter classifier for breast masses [J]. Ultrasound Med Biol, 2019, 45(7): 1603-1616. DOI: 10.1016/j.ultrasmedbio.2019.02.025.
|
[24] |
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data [J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
|
[25] |
Klimonda Z, Karwat P, Dobruch-Sobczak K, et al. Breast-lesions characterization using quantitative ultrasound features of peritumoral tissue [J]. Sci Rep, 2019, 9(1): 7963. DOI: 10.1038/s41598-019-44376-z.
|
[26] |
Sannachi L, Gangeh M, Tadayyon H, et al. Breast cancer treatment response monitoring using quantitative ultrasound and texture analysis: comparative analysis of analytical models [J]. Transl Oncol, 2019, 12(10): 1271-1281. DOI: 10.1016/j.tranon.2019.06.004.
|
[27] |
Hsu SM, Kuo WH, Kuo FC, et al. Breast tumor classification using different features of quantitative ultrasound parametric images [J]. Int J Comput Assist Radiol Surg, 2019, 14(4): 623-633. DOI: 10.1007/s11548-018-01908-8.
|
[28] |
Sadeghi-Naini A, Sannachi L, Pritchard K, et al. Early prediction of therapy responses and outcomes in breast cancer patients using quantitative ultrasound spectral texture [J]. Oncotarget, 2014, 5(11): 3497-3511. DOI: 10.18632/oncotarget.1950.
|
[29] |
Tadayyon H, Sadeghi-Naini A, Sannachi L, et al. Quantitative ultrasound assessment of tumor responses to chemotherapy using a time-integrated multi-parameter approach [J]. J Acoust Soc Am, 2014, 136(4): 2123-2123. DOI: 10.1121/1.4899647.
|
[30] |
Lassau N, Estienne T, de Vomecourt P, et al. Five simultaneous artificial intelligence data challenges on ultrasound, CT, and MRI [J]. Diagn Intervent Imaging, 2019, 100(4): 199-209. DOI: 10.1016/j.diii.2019.02.001.
|