切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2020, Vol. 16 ›› Issue (02) : 245 -248. doi: 10.3877/cma.j.issn.1673-5250.2020.02.018

所属专题: 文献

综述

宫颈癌与叶酸相关信号通路的研究进展
王文豪1, 王卉1, 郝敏1,()   
  1. 1. 山西医科大学第二医院妇产科,太原 030001
  • 收稿日期:2019-12-01 修回日期:2020-03-08 出版日期:2020-04-01
  • 通信作者: 郝敏

Research progress of folate-related signaling pathways in cervical cancer

Wenhao Wang1, Hui Wang1, Min Hao1,()   

  1. 1. Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2019-12-01 Revised:2020-03-08 Published:2020-04-01
  • Corresponding author: Min Hao
  • About author:
    Corresponding author: Hao Min, Email:
  • Supported by:
    Public Welfare Industry Research Project of National Health and Family Planning Commission of China(201402010); Key Research and Development Program of Shanxi Province(201803D31121); Scientific Research Project of Health and Family Planning Commission of Shanxi Province(2018GW04)
引用本文:

王文豪, 王卉, 郝敏. 宫颈癌与叶酸相关信号通路的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(02): 245-248.

Wenhao Wang, Hui Wang, Min Hao. Research progress of folate-related signaling pathways in cervical cancer[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2020, 16(02): 245-248.

宫颈癌是常见的妇科恶性肿瘤之一,其发病率在全世界女性生殖道恶性肿瘤中位居第1,并且是20~39岁女性因癌症死亡的第2大原因。目前已知人乳头瘤病毒(HPV)感染是导致宫颈癌发生的首要病因。但是,HPV感染率虽然高,HPV感染者最终发展为宫颈癌者却很少。诱导HPV感染发生恶性转化的机制,迄今仍未阐明。叶酸可能影响多条信号通路,促进肿瘤细胞多向分化潜能增强、上皮间质转化(EMT)和有氧糖酵解发生,在肿瘤发生、发展及化疗药物的耐药中起着至关重要的作用。笔者拟对叶酸相关信号通路在宫颈癌中的研究进展进行综述,旨在探讨宫颈癌的发病机制,提高宫颈患者生存率。

Cervical cancer is one of the most common gynecological malignancies. Among female reproductive tract malignancies in the world, its incidence ranks first, and it is the second leading cause of cancer death among women aged 20-39 years old. At present, human papilloma virus (HPV) infection is the primary cause of cervical cancer. However, although the HPV infection rate is high, few people eventually develop into cervical cancer. The mechanisms that induce malignant transformation of HPV have not been fully elucidated. Folic acid may affect multiple signaling pathways, which in turn promotes the multi-directional differentiation potential of tumor cells, epithelial-mesenchymal transition (EMT), and aerobic glycolysis. It plays a vital role in tumorigenesis, tumor progression, and resistance to chemotherapy drugs. The authors intend to review the research progress of folate-related signaling pathways in cervical cancer to explore the pathogenesis of cervical cancer and improve the survival rate of cervical cancer patients.

[1]
乔友林,赵宇倩. 宫颈癌的流行病学现状和预防[J/CD]. 中华妇幼临床医学杂志(电子版),2015,11(2):141-147. DOI:10.3877/cma.j.issn.1673-5250.2015.02.001.
[2]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017 [J]. CA Cancer J Clin, 2017, 67(1): 7-30. DOI: 10.3322/caac.21387.
[3]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
[4]
Bailey LB. Folate in health and disease [M]. 2nd ed. Boca Raton: CRC Press, 1995. DOI: 10.1007/978-1-4020-8831-5.
[5]
Liu HQ, Wang YH, Wang LL, et al. P16INK4A and survivin: diagnostic and prognostic markers in cervical intraepithelial neoplasia and cervical squamous cell carcinoma [J]. Exp Mol Pathol, 2015, 99(1): 44-49. DOI: 10.1016/j.yexmp.2015.04.004.
[6]
马晓晨,王金桃,程玉英,等. 膳食因素与宫颈癌关系的病例对照研究[J]. 中国公共卫生,2005, 21(3): 312-314. DOI: 10.3321/j.issn:1001-0580.2005.03.027.
[7]
Yang J, Yang A, Wang Z, et al. Interactions between serum folate and human papillomavirus with cervical intraepithelial neoplasia risk in a Chinese population-based study [J]. Am J Clin Nutr, 2018, 108(5): 1034-1042. DOI: 10.1093/ajcn/nqy160.
[8]
McMahon AP. More surprises in the Hedgehog signaling pathway [J]. Cell, 2000, 100(2): 185-188. DOI: 10.1016/s0092-8674(00)81555-x.
[9]
Wetmore C. Sonic hedgehog in normal and neoplastic proliferation: insight gained from human tumors and animal models [J]. Curr Opin Genet Dev, 2003, 13(1): 34-42. DOI: 10.1016/s0959-437x(03)00002-9.
[10]
Sahebjam S, Siu LL, Razak AA. The utility of hedgehog signaling pathway inhibition for cancer [J]. Oncologist, 2012, 17(8): 1090-1099. DOI: 10.1634/theoncologist.2011-0450.
[11]
Jia Y, Wang Y, Xie J. The Hedgehog pathway: role in cell differentiation, polarity and proliferation [J]. Arch Toxicol, 2015, 89(2): 179-191. DOI: 10.1007/s00204-014-1433-1.
[12]
Niewiadomski P, Niedzióka SM, Markiewicz ,et al. Gli proteins: regulation in development and cancer [J]. Cells, 2019, 8(2): 147. DOI: 10.3390/cells8020147.
[13]
Ruiz i Altaba A, Sánchez P, Dahmane N. Gli and hedgehog in cancer: tumours, embryos and stem cells [J]. Nat Rev Cancer, 2002, 2(5): 361-372. DOI: 10.1038/nrc796.
[14]
Matise MP, Joyner AL. Gli genes in development and cancer [J]. Oncogene, 1999, 18(55): 7852-7859. DOI: 10.1038/sj.onc.1203243.
[15]
Kim YI, Shirwadkar S, Choi SW, et al. Effects of dietary folate on DNA strand breaks within mutation-prone exons of the p53 gene in rat colon [J]. Gastroenterology, 2000, 119(1): 151-161. DOI: 10.1053/gast.2000.8518.
[16]
Chaudary N, Pintilie M, Hedley D, et al. Hedgehog inhibition enhances efficacy of radiation and cisplatin in orthotopic cervical cancer xenografts [J]. Br J Cancer, 2017, 116(1): 50-57. DOI: 10.1038/bjc.2016.383.
[17]
Zhang F, Ren CC, Liu L, et al. SHH gene silencing suppresses epithelial-mesenchymal transition, proliferation, invasion, and migration of cervical cancer cells by repressing the hedgehog signaling pathway [J]. J Cell Biochem, 2018, 119(5): 3829-3842. DOI: 10.1002/jcb.26414.
[18]
Katoh M, Katoh M. Transcriptional regulation of WNT2B based on the balance of Hedgehog, Notch, BMP and WNT signals [J]. Int J Oncol, 2009, 34(5): 1411-1415.
[19]
Xuan YH, Jung HS, Choi YL, et al. Enhanced expression of hedgehog signaling molecules in squamous cell carcinoma of uterine cervix and its precursor lesions [J]. Mod Pathol, 2006, 19(8): 1139-1147. DOI: 10.1038/modpathol.3800600.
[20]
Kitazawa S, Kitazawa R, Tamada H, et al. Promoter structure of human sonic hedgehog gene [J]. Biochim Biophys Acta, 1998, 1443(3): 358-363. DOI: 10.1016/s0167-4781(98)00243-7.
[21]
Feng HC, Lin JY, Hsu SH, et al. Low folate metabolic stress reprograms DNA methylation-activated sonic hedgehog signaling to mediate cancer stem cell-like signatures and invasive tumour stage-specific malignancy of human colorectal cancers [J]. Int J Cancer, 2017, 141(12): 2537-2550. DOI: 10.1002/ijc.31008.
[22]
Wang TP, Hsu SH, Feng HC, et al. Folate deprivation enhances invasiveness of human colon cancer cells mediated by activation of sonic hedgehog signaling through promoter hypomethylation and cross action with transcription nuclear factor-kappa B pathway [J]. Carcinogenesis, 2012, 33(6): 1158-1168. DOI: 10.1093/carcin/bgs138.
[23]
Chen WJ, Huang RS. Low-folate stress reprograms cancer stem cell-like potentials and bioenergetics metabolism through activation of mTOR signaling pathway to promote in vitro invasion and in vivo tumorigenicity of lung cancers [J]. J Nutr Biochem, 2018, 53: 28-38. DOI: 10.1016/j.jnutbio.2017.10.001.
[24]
Zhang W, Wu X, Hu L, et al. Overexpression of human papillomavirus type 16 oncoproteins enhances epithelial-mesenchymal transition via STAT3 signaling pathway in non-small cell lung cancer cells [J]. Oncol Res, 2017, 25(5): 843-852. DOI: 10.3727/096504016X14813880882288.
[25]
Stamos JL, Weis WI. The β-catenin destruction complex [J]. Cold Spring Harb Perspect Biol, 2013, 5(1): a007898. DOI: 10.1101/cshperspect.a007898.
[26]
Levine AJ, Oren M. The first 30 years of p53: growing ever more complex [J]. Nat Rev Cancer, 2009, 9(10): 749-758. DOI: 10.1038/nrc2723.
[27]
Miller JW, Ulrich CM. Folic acid and cancer--where are we today? [J]. Lancet, 2013, 381(9871): 974-976. DOI: 10.1016/S0140-6736(13)60110-5.
[28]
Zhang YF, Zhou L, Zhang HW, et al. Association between folate intake and the risk of lung cancer: a dose-response Meta-analysis of prospective studies [J]. PLoS One, 2014, 9(4): e93465. DOI: 10.1371/journal.pone.0093465.
[29]
Moon RT, Kohn AD, De Ferrari GV, et al. WNT and beta-catenin signalling: diseases and therapies [J]. Nat Rev Genet, 2004, 5(9): 691-701. DOI: 10.1038/nrg1427.
[30]
Nobori T, Miura K, Wu DJ, et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers [J]. Nature, 1994, 368(6473): 753-756. DOI: 10.1038/368753a0.
[31]
Walker DG, Duan W, Popovic EA, et al. Homozygous deletions of the multiple tumor suppressor gene 1 in the progression of human astrocytomas [J]. Cancer Res, 1995, 55(1): 20-23.
[32]
D′Amico M, Wu K, Fu M, et al. The inhibitor of cyclin-dependent kinase 4a/alternative reading frame (INK4a/ARF) locus encoded proteins p16INK4a and p19ARF repress cyclin D1 transcription through distinct cis elements [J]. Cancer Res, 2004, 64(12): 4122-4130. DOI: 10.1158/0008-5472.CAN-03-2519.
[33]
Liao GD, Sellors JW, Sun HK, et al. p16INK4A immunohistochemical staining and predictive value for progression of cervical intraepithelial neoplasia grade 1: a prospective study in China [J]. Int J Cancer, 2014, 134(7): 1715-1724. DOI: 10.1002/ijc.28485.
[34]
Zhang Q, Kuhn L, Denny LA, et al. Impact of utilizing p16INK4A immunohistochemistry on estimated performance of three cervical cancer screening tests [J]. Int J Cancer, 2007, 120(2): 351-356. DOI: 10.1002/ijc.22172.
[35]
Piyathilake CJ, Macaluso M, Brill I, et al. Lower red blood cell folate enhances the HPV-16-associated risk of cervical intraepithelial neoplasia [J]. Nutrition, 2007, 23(3): 203-210. DOI: 10.1016/j.nut.2006.12.002.
[36]
齐永霞. 培美曲塞联合顺铂治疗宫颈癌的临床疗效观察[J/CD]. 实用妇科内分泌电子杂志,2019, 6(18): 79-80. DOI: 10.16484/j.cnki.issn2095-8803.2019.18.057.
[37]
Miller DS, Blessing JA, Bodurka DC, et al. Evaluation of pemetrexed (Alimta, LY231514) as second line chemotherapy in persistent or recurrent carcinoma of the cervix: a phase Ⅱ study of the Gynecologic Oncology Group [J]. Gynecol Oncol, 2008, 110(1): 65-70. DOI: 10.1016/j.ygyno.2008.03.009.
[38]
Goedhals L, van Wiyk AL, Smith BL, et al. Pemetrexed (Alimta, LY231514) demonstrates clinical activity in chemonaive patients with cervical cancer in a phase Ⅱ single-agent trial [J]. Int J Gynecol Cancer, 2006, 16(3): 1172-1178. DOI: 10.1111/j.1525-1438.2006.00451.x.
[39]
Eifel Patricia J, Winter Kathryn, Morris Mitchell, et al. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: an update of radiation therapy oncology group trial (RTOG) 90-01 [J]. J Clin Oncol, 2004, 22(5): 872-880. DOI: 10.1200/JCO.2004.07.197.
[1] 马敏榕, 李聪, 周勤. 宫颈癌治疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 497-504.
[2] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[3] 顾娟, 孙擎擎, 胡方方, 曹义娟, 祁玉娟. 子宫内膜容受性检测改善胚胎反复种植失败患者妊娠结局的临床应用[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 582-587.
[4] 周东杰, 蒋敏, 范海瑞, 高玲玲, 孔祥, 卢丹, 王丽萍. 非编码RNA在卵泡发育成熟中作用及其机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 387-393.
[5] 陈荟竹, 郭应坤, 汪昕蓉, 宁刚, 陈锡建. 上皮性卵巢癌"二元论模型"的分子生物学研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 394-402.
[6] 韩春颖, 王婷婷, 李艳艳, 朴金霞. 子宫内膜癌患者淋巴管间隙浸润预测因素研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 403-409.
[7] 刘先勇. 胃Lgr5+干细胞、Mist1+干细胞和Cck2r+干细胞癌变的分子机制[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 183-188.
[8] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[9] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[10] 王珊, 马清, 姚兰, 杨华昱. 老年维持性血透患者叶酸治疗与miR-150-5p血清水平的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 139-144.
[11] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[12] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[13] 李秘, 邱华娟, 纪燕琴, 周明辉. P16、Ki67表达及病毒载量对宫颈上皮内瘤变Ⅱ合并高危型人乳头瘤病毒感染患者病变转归的影响[J]. 中华临床医师杂志(电子版), 2023, 17(03): 272-278.
[14] 何敏, 黄桢. 加减知柏地黄丸对特发性中枢性性早熟小鼠骨细胞骨形成蛋白-Smads信号通路的影响[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 214-220.
[15] 刘迎, 尹嫚, 杨林青, 王云飞. 子宫颈浸润性复层产黏液的癌的诊断学特征并文献复习[J]. 中华诊断学电子杂志, 2023, 11(03): 173-177.
阅读次数
全文


摘要