切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2019, Vol. 15 ›› Issue (02) : 150 -156. doi: 10.3877/cma.j.issn.1673-5250.2019.02.005

所属专题: 文献

论著

早孕期胎儿超声检测预测胎儿重型α地中海贫血的价值
甄理1, 甄恩明2, 许遵鹏1, 杨昕1, 韩瑾1,()   
  1. 1. 广州市妇女儿童医疗中心产前诊断中心 510623
    2. 广州市中西医结合医院口腔科 510800
  • 收稿日期:2018-10-08 修回日期:2019-03-18 出版日期:2019-04-01
  • 通信作者: 韩瑾

Value of fetal ultrasound testing for prediction of fetal severe α-thalassemia in the first trimester pregnancy

Li Zhen1, Enming Zhen2, Zunpeng Xu1, Xin Yang1, Jin Han1,()   

  1. 1. Prenatal Diagnosis Center, Guangzhou Women and Children′s Medical Center, Guangzhou 510623, Guangdong Province, China
    2. Department of Stomatology, Guangzhou Traditional Chinese Medicine and Western Medicine Hospital, Guangzhou 510800, Guangdong Province, China
  • Received:2018-10-08 Revised:2019-03-18 Published:2019-04-01
  • Corresponding author: Jin Han
  • About author:
    Corresponding author: Han Jin, Email:
  • Supported by:
    National Natural Science Foundation of China(81601280); Science and Technology Plan Project of Department of Science and Technology of Guangdong Province(2016A020218003)
引用本文:

甄理, 甄恩明, 许遵鹏, 杨昕, 韩瑾. 早孕期胎儿超声检测预测胎儿重型α地中海贫血的价值[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(02): 150-156.

Li Zhen, Enming Zhen, Zunpeng Xu, Xin Yang, Jin Han. Value of fetal ultrasound testing for prediction of fetal severe α-thalassemia in the first trimester pregnancy[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2019, 15(02): 150-156.

目的

探讨早孕期(胎龄为11+0~13+6周)超声检测指标预测胎儿重型α地中海贫血的价值。

方法

选择2015年1月3日至2016年12月30日,于广州市妇女儿童医疗中心接受定期产前检查、夫妻双方均为轻型α地中海贫血基因携带者所孕育的282例单胎妊娠胎儿为研究对象。对所有胎儿于胎龄为11+0~13+6周时进行超声筛查。早孕期超声检测指标包括:胎儿心胸直径比(CTR)、大脑中动脉血流峰值流速(MCA-PSV)和胎盘厚度(PT)。若胎儿的上述超声检测指标筛查结果呈阳性,则对其进一步进行绒毛穿刺或者羊膜腔穿刺,进行α地中海贫血基因检测;若呈阴性,则进行孕期随访,并于生后对新生儿常规进行脐带血血红蛋白(Hb)电泳分析,判断胎儿是否罹患重型α地中海贫血。根据产前α地中海贫血基因检测结果,或新生儿Hb电泳分析结果,将所有胎儿分别纳入重型组(重型α地中海贫血胎儿)与对照组(轻型α地中海贫血胎儿及健康胎儿)。采用成组t检验,对重型组与对照组胎儿早孕期超声筛查的CTR、MCA-PSV、PT值进行比较。绘制早孕期胎儿超声筛查的CTR、MCA-PSV、PT值,预测胎儿重型α地中海贫血的受试者工作特征(ROC)曲线,并计算ROC曲线下面积(ROC-AUC),根据约登指数最大原则,确定早孕期胎儿超声筛查的CTR、MCA-PSV、PT值,预测胎儿重型α地中海贫血的最佳临界值,并计算其敏感度、特异度和似然比。本研究遵循的程序符合广州市妇女儿童医疗中心人体试验委员会制定的标准,并经过该伦理委员会批准(批准文号:2014120106)。

结果

①根据282例胎儿的随访结果,最终61例(21.6%)被确诊为重型α地中海贫血,而被纳入重型组(n=61);221例为轻型α地中海贫血或健康胎儿,则被纳入对照组(n=221)。2组胎儿胎龄构成比等一般临床资料比较,差异无统计学意义(P>0.05)。②重型组胎儿的早孕期CTR、MCA-PSV、PT值分别为(0.52±0.04)、(1.61±0.58) cm/s、(1.30±0.20) mm,均显著超过对照组的(0.44±0.03)、(1.20±0.30) cm/s 、(1.00±0.30) mm,2组比较,差异均有统计学意义(t=19.470、9.320、6.700,P<0.001)。③ROC曲线分析结果显示,早孕期胎儿的CTR、MCA-PSV、PT值,对于预测胎儿重型α地中海贫血的ROC-AUC分别为0.949(95%CI:0.909~0.990,P<0.001),0.811(95%CI:0.741~0.811,P<0.001),0.778(95%CI:0.720~0.856,P<0.001)。根据约登指数最大原则,早孕期胎儿的CTR、MCA-PSV、PT值,对于预测胎儿重型α地中海贫血的最佳临界值分别为0.48、1.50 MoM及1.50 MoM(MoM为中位数倍数),此时其预测胎儿重型α地中海贫血的敏感度分别为92.7%、48.2%及24.6%,特异度分别为95.5%、90.8%及94.1%,似然比分别为20.6、5.2及5.0。

结论

早孕期胎儿超声检测相关指标,可有效预测重型和非重型α地中海贫血胎儿,其中预测敏感度和特异度最高的均为早孕期胎儿超声检测的CTR。对于重型α地中海贫血高危胎儿,若早孕期对胎儿的超声检测指标均为正常,则胎儿罹患重型α地中海贫血的几率低。

Objective

To evaluate the values of ultrasound testing markers for prediction of fetal severe α-thalassemia in the first trimester pregnancy(11+ 0-13+ 6 weeks of gestational age).

Methods

From January 3, 2015 to December 30, 2016, a total of 282 cases of fetuses with singleton pregnancy whose parents both were mild α-thalassemia gene carriers and received regular prenatal examinations at the Guangzhou Women and Children′s Medical Center were selected as research subjects. All the fetuses received ultrasound screening in the first trimester pregnancy. And ultrasound testing markers including fetal cardiothoracic ratio (CTR), peak systolic velocity of middle cerebral artery (MCA-PSV), and placental thickness (PT) were prospectively assessed and recorded. For those with positive results of the above-mentioned ultrasound testing markers, chorionic puncture or amniocentesis was used to detect α-thalassemia gene and diagnose fetal severe α-thalassemia; for those with negative results, they were followed up until birth, and the umbilical cord blood hemoglobin (Hb) electrophoretic analysis was performed routinely after birth to diagnose whether the fetus was severe α-thalassemia. According to the α-thalassemia gene detection results or Hb electrophoretic analysis results, all fetuses were divided into severe group (homozygous α-thalassemia-1 fetus) and control group (mild α-thalassemia fetus and healthy fetus). The values of fetal CTR, MCA-PSV and PT in the first trimester pregnancy of severe group and control group were compared by independent-samples t test. The receiver operator characteristic (ROC) curves of fetal CTR, MCA-PSV and PT of ultrasound testing in the first trimester pregnancy for prediction of fetal severe α-thalassemia were drawn, and the area under ROC curve (ROC-AUC) were calculated. The optimal critical values of fetal CTR, MCA-PSV and PT in the first trimester pregnancy for prediction of fetal severe α-thalassemia were obtained when the Youden index reaching the maximum value. And their sensitivities, specificities and likelihood ratios were calculated. The procedures followed in this study were in accordance with the ethical standards established by the Human Subjects Trial Committee of Guangzhou Women and Children′s Medical Center, and this study was approved by this committee (Approval No. 2014120106).

Results

①According to the follow-up results of 282 fetuses, 61 cases (21.6%) were diagnosed as severe α-thalassemia fetus and included in severe group (n=61), and 221 cases as mild α-thalassemia or healthy fetus were included in control group (n=221). There was no significant difference between the two groups in general clinical data such as the ratio of different gestational age (P>0.05). ②The CTR, MCA-PSV and PT values in the first trimester pregnancy of fetuses in severe group were (0.52±0.04), (1.61±0.58) cm/s, (1.30±0.20) mm respectively, which were significantly higher than those of control group (0.44±0.03), (1.20±0.30) cm/s, (1.00±0.30) mm, and there were significant differences between two groups (t=19.470, 9.320, 6.700; all P<0.001). ③ROC curve analysis showed that the ROC-AUC of fetal CTR, MCA-PSV and PT values in the first trimester pregnancy for prediction of fetal severe α-thalassemia were 0.949 (95%CI: 0.909-0.990, P<0.001), 0.811 (95%CI: 0.741-0.811, P<0.001), 0.778 (95%CI: 0.720-0.856, P<0.001) respectively. According to the maximum principle of Yoden index, the optimal cut-off values of CTR, MCA-PSV and PT in the first trimester pregnancy for prediction of fetal severe α-thalassemia were 0.48, 1.50 MoM and 1.50 MoM (multiples of the median), and the sensitivities for prediction of fetal severe α-thalassemia were 92.7%, 48.2% and 24.6% respectively, and the specificities were 95.5%, 90.8% and 94.1% respectively, and the likelihood ratios were 20.6, 5.2 and 5.0 respectively.

Conclusions

The ultrasound testing markers in the first trimester pregnancy can effectively predict fetal severe and non-severe α-thalassemia, and the most sensitive marker was fetal CTR. For fetuses with high-risk of severe α-thalassemia, if all the ultrasound testing markers are normal in the first trimester pregnancy, the probability of severe α-thalassemia is low.

图1 早孕期胎儿超声检测结果预测重型α地中海贫血胎儿流程图
表1 重型组和对照组胎儿的胎龄分布比较[例数(%)]
表2 重型组和对照组胎儿早孕期超声检测指标比较(±s)
图2 早孕期胎儿超声检测的CTR、MCA-PSV、PT值预测重型α地中海贫血胎儿的ROC曲线
[1]
Abbasi N, Johnson JA, Ryan G. Fetal anemia[J]. Ultrasound Obstet Gynecol, 2017, 50(2): 145-153.
[2]
Li X, Zhou Q, Zhang M, et al. Sonographic markers of fetal α-thalassemia major[J]. J Ultrasound Med, 2015, 34(2): 197-206.
[3]
Siwawong W, Tongprasert F, Srisupundit K, et al. Fetal cardiac circumference derived by spatiotemporal image correlation as a predictor of fetal hemoglobin Bart disease at midpregnancy[J]. J Ultrasound Med, 2013, 32(8): 1483-1488.
[4]
Mahendru AA, Wilhelm-Benartzi CS, Wilkinson IB, et al. Gestational length assignment based on last menstrual period, first trimester crown-rump length, ovulation, and implantation timing[J]. Arch Gynecol Obstet, 2016, 294(4): 867-876.
[5]
Yatim NF, Rahim MA, Menon K, et al. Molecular characterization of α- and β-thalassaemia among Malay patients[J]. Int J Mol Sci, 2014, 15(5): 8835-8845.
[6]
Gilad O, Shemer OS, Dgany O, et al. Molecular diagnosis of α-thalassemia in a multiethnic population[J]. Eur J Haematol, 2017, 98(6): 553-562.
[7]
Jatavan P, Chattipakorn N, Tongsong T. Fetal hemoglobin Bart′s hydrops fetalis: pathophysiology, prenatal diagnosis and possibility of intrauterine treatment[J]. J Matern Fetal Neonatal Med, 2018, 31(7): 946-957.
[8]
Sirichotiyakul S, Luewan S, Srisupundit K, et al. Prenatal ultrasound evaluation of fetal Hb Bart′s disease among pregnancies at risk at 11 to 14 weeks of gestation[J]. Prenat Diagn, 2014, 34(3): 230-234.
[9]
Lee HH, Mak AS, Poon CF, et al. Prenatal ultrasound monitoring of homozygous α0-thalassemia-induced fetal anemia[J]. Best Pract Res Clin Obstet Gynaecol, 2017, 39: 53-62.
[10]
Srisupundit K, Piyamongkol W, Tongsong T. Identification of fetuses with hemoglobin Bart′s disease using middle cerebral artery peak systolic velocity[J]. Ultrasound Obstet Gynecol, 2009, 33(6): 694-697.
[11]
Leung KY, Cheong KB, Lee CP, et al. Ultrasonographic prediction of homozygous alpha0-thalassemia using placental thickness, fetal cardiothoracic ratio and middle cerebral artery Doppler: alone or in combination?[J]. Ultrasound Obstet Gynecol, 2010, 35(2): 149-154.
[12]
Lam YH, Tang MH, Lee CP, et al. Prenatal ultrasonographic prediction of homozygous type 1 alpha-thalassemia at 12 to 13 weeks of gestation[J]. Am J Obstet Gynecol, 1999, 180(1 Pt 1): 148-150.
[13]
Lam YH, Tang MH. Prenatal diagnosis of haemoglobin Bart′s disease by cordocentesis at 12-14 weeks: experience with the first 59 cases[J]. Prenat Diagn, 2000, 20(11): 900-904.
[14]
Kalache KD, Dückelmann AM. Doppler in obstetrics: beyond the umbilical artery[J]. Clin Obstet Gynecol, 2012, 55(1): 288-295.
[15]
Liao C, Pan M, Han J, et al. Prenatal control of Hb Bart′s hydrops fetalis: a two-year experience at a mainland Chinese hospital[J]. J Matern Fetal Neonatal Med, 2015, 28(4): 413-415.
[16]
Yang Y, Li DZ, He P. A program on noninvasive prenatal diagnosis of α-thalassemia in mainland China: a cost-benefit analysis[J]. Hemoglobin, 2016, 40(4): 247-249.
[1] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[2] 武玺宁, 欧阳云淑, 张一休, 孟华, 徐钟慧, 张培培, 吕珂. 胎儿心脏超声检查在抗SSA/Ro-SSB/La抗体阳性妊娠管理中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1056-1060.
[3] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[4] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[5] 朱连华, 费翔, 韩鹏, 姜波, 李楠, 罗渝昆. 高帧频超声造影在胆囊息肉样病变中的鉴别诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 904-910.
[6] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[7] 赵红娟, 赵博文, 潘美, 纪园园, 彭晓慧, 陈冉. 应用多普勒超声定量分析正常中晚孕期胎儿左心室收缩舒张时间指数[J]. 中华医学超声杂志(电子版), 2023, 20(09): 951-958.
[8] 陈舜, 薛恩生, 叶琴. PDCA在持续改进超声危急值管理制度中的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 974-978.
[9] 周钰菡, 肖欢, 唐毅, 杨春江, 周娟, 朱丽容, 徐娟, 牟芳婷. 超声对儿童髋关节暂时性滑膜炎的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 795-800.
[10] 刘欢颜, 华扬, 贾凌云, 赵新宇, 刘蓓蓓. 颈内动脉闭塞病变管腔结构和血流动力学特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 809-815.
[11] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[12] 张璟璟, 赵博文, 潘美, 彭晓慧, 毛彦恺, 潘陈可, 朱玲艳, 朱琳琳, 蓝秋晔. 胎儿超声心动图测量McGoon指数在评价胎儿肺血管发育中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(08): 860-865.
[13] 张丽丽, 陈莉, 余美琴, 聂小艳, 王婧玲, 刘婷. PDCA循环法在超声浅表器官亚专科建设中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(07): 717-721.
[14] 旺久, 陈军, 朱霞, 米玛央金, 赵胜, 陈欣林, 李建华, 王双. 山南市妇幼保健院开展胎儿系统超声筛查的效果分析[J]. 中华医学超声杂志(电子版), 2023, 20(07): 728-733.
[15] 徐鹏, 李军, 高巍伦, 王峥, 庞珅, 李春妮, 朱霆. 快速旋转扫查法在胎儿超声心动图检查中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 761-766.
阅读次数
全文


摘要