[1] |
Olmeda B, Martinez-Calle M, Pérez-Gil J. Pulmonary surfactant metabolism in the alveolar airspace: biogenesis, extracellular conversions, recycling[J]. Ann Anat, 2016, 209: 78-92.
|
[2] |
Parra E, Pérez-Gil J. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films[J]. Chem Phys Lipids, 2015, 185(1): 153-175.
|
[3] |
Zhang H, Fan Q, Wang YE, et al. Comparative study of clinical pulmonary surfactants using atomic force microscopy[J]. Biochim Biophys Acta, 2011, 1808(7): 1832-1842.
|
[4] |
Kim K, Choi SQ, Zell ZA, et al. Effect of cholesterol nanodomains on monolayer morphology and dynamics[J]. Proc Natl Acad Sci USA, 2013, 110(33): E3054-E3060.
|
[5] |
Sardesai S, Biniwale M, Wertheimer F, et al. Evolution of surfactant therapy for respiratory distress syndrome: past, present, and future[J]. Pediatr Res, 2017, 81(1-2): 240-248.
|
[6] |
Whitsett JA. The molecular era of surfactant biology[J]. Neonatology, 2014, 105(4): 337-343.
|
[7] |
Lopez-Rodriguez E, Pérez-Gil J. Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy[J]. Biochim Biophys Acta, 2014, 1838(6): 1568-1585.
|
[8] |
Nogee LM. Alterations in SP-B and SP-C expression in neonatal lung disease[J]. Annu Rev Physiol, 2004, 66: 601-623.
|
[9] |
Mayer S, Raulf MK, Lepenies B. C-type lectins: their network and roles in pathogen recognition and immunity[J]. Histochem Cell Biol, 2017, 147(2): 223-237.
|
[10] |
Vieira F, Kung JW, Bhatti F. Structure, genetics and function of the pulmonary associated surfactant proteins A and D: the extra-pulmonary role of these C type lectins[J]. Ann Anat, 2017, 211: 184-201.
|
[11] |
Ujma S, Horsnell WGC, Katz AA, et al. Non-pulmonary immune functions of surfactant proteins A and D [J]. J Innate Immun, 2017, 9(1): 3-11.
|
[12] |
Jakel A, Qaseem AS, Kishore U, et al. Ligands and receptors of lung surfactant proteins SP-A and SP-D[J]. Front Biosci (Landmark Ed), 2013, 18(3): 1129-1140.
|
[13] |
Hsieh IN, De Luna X, White MR, et al. The role and molecular mechanism of action of surfactant protein D in innate host defense against influenza A virus[J]. Front Immunol, 2018, 9(6): 1368-1376.
|
[14] |
El Saleeby CM, Li R, Somes GW, et al. Surfactant protein A2 polymorphisms and disease severity in a respiratory syncytial virus-infected population[J]. J Pediatr, 2010, 156(3): 409-414.
|
[15] |
Levine AM, Elliott J, Whitsett JA, et al. Surfactant protein-D enhances phagocytosis and pulmonary clearance of respiratory syncytial virus[J]. Am J Respir Cell Mol Biol, 2004, 31(2): 193-199.
|
[16] |
Yang HY, Li H, Wang YG, et al. Correlation analysis between single nucleotide polymorphisms of pulmonary surfactant protein A gene and pulmonary tuberculosis in the Han population in China[J]. Int J Infect Dis, 2014, 26: 31-36.
|
[17] |
Hsieh MH, Ou CY, Hsieh WY, et al. Functional analysis of genetic variations in surfactant protein D in mycobacterial infection and their association with tuberculosis[J]. Frontin Immunol, 2018, 9: 1543-1553.
|
[18] |
Wong SWW, Rani M, Dodagatta-Marri E, et al. Fungal melanin stimulates surfactant protein D-mediated opsonization of and host immune response to Aspergillus fumigatus spores[J]. J Biol Chem, 2018, 293(13): 4901-4912.
|
[19] |
Reinhardt A, Wehle M, Geissner A, et al. Structure binding relationship of human surfactant protein D and various lipopolysaccharide inner core structures[J]. J Struct Biol, 2016, 195(3): 387-395.
|
[20] |
Qadi M, Lopezcausapé C, Izquierdorabassa S, et al. Surfactant protein A recognizes outer membrane protein OprH on Pseudomonas aeruginosa chronic infection isolates[J]. J Infect Dis, 2016, 214(9): 1449-1455.
|
[21] |
Thawer S, Auret J, Schnoeller C, et al. Surfactant protein-D is essential for immunity to helminth infection[J]. PLoS Pathog, 2016, 12(2): e1005461.
|
[22] |
Tan RM, Kuang Z, Hao Y, et al. Type Ⅳ pilus glycosylation mediates resistance of Pseudomonas aeruginosa to opsonic activities of the pulmonary surfactant protein A[J]. Infect Immun, 2015, 83(4): 1339-1346.
|
[23] |
Clark HW, Mackay RM, Deadman ME, et al. Crystal structure of a complex of surfactant protein D and Haemophilus influenzae lipopolysaccharide reveals shielding of core structures in SP-D resistant strains[J]. Infect Immun, 2016, 84(5): 1585-1592.
|
[24] |
Gardai SJ, Xiao YQ, Dickinson M, et al. By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation[J]. Cell, 2003, 115(1): 13-23.
|
[25] |
Mackay RM, Grainge CL, Lau LC, et al. Airway surfactant protein D deficiency in adults with severe asthma[J]. Chest, 2016, 149(5): 1165-1172.
|
[26] |
Yang X, Yan J, Feng J. Surfactant protein A is expressed in the central nervous system of rats with experimental autoimmune encephalomyelitis, and suppresses inflammation in human astrocytes and microglia[J]. Mol Med Rep, 2017, 15(6): 3555-3565.
|
[27] |
Sarashina-Kida H, Negishi H, Nishio J, et al. Gallbladder-derived surfactant protein D regulates gut commensal bacteria for maintaining intestinal homeostasis[J]. Proc Natl Acad Sci USA, 2017, 114(38): 10178-10183.
|
[28] |
Luo JM, Liu ZQ, Eugene CY. Overexpression of pulmonary surfactant protein A like molecules in inflammatory bowel disease tissues[J]. J Cent South Univ (Med Sci), 2008, 33(11): 979-986.
|
[29] |
Rokade S, Kishore U, Madan T. Surfactant protein D regulates murine testicular immune milieu and sperm functions[J]. Am J Reprod Immunol, 2017, 77(3): e12629.
|
[30] |
Madhukaran SP, Kishore U, Jamil K, et al. Decidual expression and localization of human surfactant protein SP-A and SP-D, and complement protein C1q[J]. Mol Immunol, 2015, 66(2): 197-207.
|
[31] |
Wu X, Zhao G, Lin J, et al. The production mechanism and immunosuppression effect of pulmonary surfactant protein D via toll like receptor 4 signaling pathway in human corneal epithelial cells during Aspergillus fumigatus infection[J]. Int Immunopharmacol, 2015, 29(2): 433-439.
|
[32] |
Zhang Z, Abdel-Razek O, Hawgood S, et al. Protective role of surfactant protein D in ocular Staphylococcus aureus infection[J]. PLoS One, 2015, 10(9): e0138597.
|
[33] |
Schicht M, Knipping S, Hirt R, et al. Detection of surfactant proteins A, B, C, and D in human nasal mucosa and their regulation in chronic rhinosinusitis with polyps[J]. Am J Rhinol Allergy, 2013, 27(1): 24-29.
|
[34] |
Uhliarova B, Kopincova J, Adamkov M, et al. Surfactant proteins A and D are related to severity of the disease, pathogenic bacteria and comorbidity in patients with chronic rhinosinusitis with and without nasal polyps[J]. Clin Otolaryngol, 2016, 41(3): 249-258.
|
[35] |
Benkoe T, Baumann S, Weninger M, et al. Comprehensive evaluation of 11 cytokines in premature infants with surgical necrotizing enterocolitis[J]. PLoS One, 2013, 8(3): e58720.
|
[36] |
Benkoe T, Reck C, Gleiss A, et al. Interleukin 8 correlates with intestinal involvement in surgically treated infants with necrotizing enterocolitis[J]. J Pediatr Surg, 2012, 47(8): 1548-1554.
|
[37] |
Saka R, Wakimoto T, Nishiumi F, et al. Surfactant protein-D attenuates the lipopolysaccharide-induced inflammation in human intestinal cells overexpressing toll-like receptor 4[J]. Pediatr Surg Int, 2016, 32(1): 59-63.
|
[38] |
Quintanilla HD, Liu Y, Fatheree NY, et al. Oral administration of surfactant protein-a reduces pathology in an experimental model of necrotizing enterocolitis[J]. J Pediatr Gastroenterol Nutr, 2015, 60(5): 613-620.
|
[39] |
Rausch F, Schicht M, Paulsen F, et al. " SP-G" ,a putative new surfactant protein--tissue localization and 3D structure[J]. PLoS One, 2012, 7(10): e47789.
|
[40] |
Schicht M, Rausch F, Finotto S, et al. SFTA3, a novel protein of the lung: three-dimensional structure, characterisation and immune activation[J]. Eur Respir J, 2014, 44(2): 447-456.
|
[41] |
Merritt TA, Hallman M, Bloom BT, et al. Prophylactic treatment of very premature infants with human surfactant[J]. N Engl J Med, 1986, 315(13): 785-790.
|
[42] |
Vaucher YE, Harker L, Merritt TA, et al. Outcome at twelve months of adjusted age in very low birth weight infants with lung immaturity: a randomized, placebo-controlled trial of human surfactant[J]. J Pediatr, 1993, 122(1): 126-132.
|
[43] |
Halliday HL. Surfactants: past, present and future[J]. J Perinatol, 2008, 28(Suppl 1): S47-S56.
|
[44] |
Hermans E, Bhamla MS, Kao P, et al. Lung surfactants and different contributions to thin film stability[J]. Soft Matter, 2015, 11(41): 8048-8057.
|
[45] |
Singh N, Halliday HL, Stevens TP, et al. Comparison of animal-derived surfactants for the prevention and treatment of respiratory distress syndrome in preterm infants[J]. Cochrane Database Syst Rev, 2015, 12: CD010249.
|
[46] |
Curstedt T, Calkovska A, Johansson J. New generation synthetic surfactants[J]. Neonatology, 2013, 103(4): 327-330.
|
[47] |
Soll RF, Blanco F. Natural surfactant extract versus synthetic surfactant for neonatal respiratory distress syndrome[J]. Cochrane Database Syst Rev, 2001, 2: CD000144.
|
[48] |
Seehase M, Collins JJ, Kuypers E, et al. New surfactant with SP-B and C analogs gives survival benefit after inactivation in preterm lambs[J]. PLoS One, 2012, 7(10): e47631.
|
[49] |
Ricci F, Murgia X, Razzetti R, et al. In vitro and in vivo comparison between poractant alfa and the new generation synthetic surfactant CHF5633[J]. Pediatr Res, 2017, 81(2): 369-375.
|
[50] |
Sweet DG, Turner MA, Straňák Z, et al. A first-in-human clinical study of a new SP-B and SP-C enriched synthetic surfactant (CHF5633) in preterm babies with respiratory distress syndrome[J]. Arch Dis Child Fetal Neonatal Ed, 2017, 102(6): F497-F503.
|
[51] |
Rey-Santano C, Mielgo VE, Murgia X, et al. Cerebral and lung effects of a new generation synthetic surfactant with SP-B and SP-C analogs in preterm lambs[J]. Pediatr Pulmonol, 2017, 52(7): 929-938.
|
[52] |
Veldhuizen R, Nag K, Orgeig S, et al. The role of lipids in pulmonary surfactant[J]. Biochim Biophys Acta, 1998, 1408(2-3): 90-108.
|
[53] |
Brogden KA. Changes in pulmonary surfactant during bacterial pneumonia[J]. Ant Van Leeuwenhoek, 1991, 59(4): 215-223.
|
[54] |
Suri LN, Cruz A, Veldhuizen RA, et al. Adaptations to hibernation in lung surfactant composition of 13-lined ground squirrels influence surfactant lipid phase segregation properties[J]. Biochim Et Biophys Acta, 2013, 1828(8): 1707-1714.
|