切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2018, Vol. 14 ›› Issue (01) : 2 -7. doi: 10.3877/cma.j.issn.1673-5250.2018.01.001

所属专题: 文献

专家约稿

核心结合因子急性髓系白血病发病机制和诊治现状
沈成奇1, 高举1,(), 郭霞1, 代依灵1, 饶艳琼1   
  1. 1. 610041 成都,四川大学华西第二医院儿童血液肿瘤科、出生缺陷与相关妇儿疾病教育部重点实验室
  • 收稿日期:2017-11-21 修回日期:2018-01-05 出版日期:2018-02-01
  • 通信作者: 高举

Core-binding factor acute myeloid leukemia: an update of pathogenesis, diagnosis and novel targeted therapies

Chengqi Shen1, Ju Gao1,(), Xia Guo1, Yiling Dai1, Yanqiong Rao1   

  1. 1. Department of Pediatric Hematology/Oncology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2017-11-21 Revised:2018-01-05 Published:2018-02-01
  • Corresponding author: Ju Gao
  • About author:
    Corresponding author: Gao Ju, Email:
引用本文:

沈成奇, 高举, 郭霞, 代依灵, 饶艳琼. 核心结合因子急性髓系白血病发病机制和诊治现状[J]. 中华妇幼临床医学杂志(电子版), 2018, 14(01): 2-7.

Chengqi Shen, Ju Gao, Xia Guo, Yiling Dai, Yanqiong Rao. Core-binding factor acute myeloid leukemia: an update of pathogenesis, diagnosis and novel targeted therapies[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2018, 14(01): 2-7.

核心结合因子急性髓系白血病(CBF-AML)是由特定非随机性染色体易位和倒位所致,为急性髓系白血病(AML)的独立细胞遗传学亚型,一般被分为t(8;21)AML和inv(16)AML。对CBF-AML患者采取常规化疗的总体预后良好,但是成年人患者复发率可高达40%,CBF-AML复发为临床亟待解决的问题。近年研究结果表明,CBF-AML在临床表型、细胞分子遗传学和表观遗传学方面均存在较大异质性。因此,综合分析2种CBF-AML并存细胞分子遗传学异常种类和频率,对于优化CBF-AML分层诊断、预后预测,以及整合新型靶向治疗,进一步提高预后、降低复发具有重要临床意义。笔者拟就近年本领域相关研究进展阐述如下。

Core-binding factor acute myeloid leukemia (CBF-AML) is caused by specific non-random chromosome translocation or inversion, and has been categorized as an independent cytogenetic type of acute myeloid leukemia (AML). Clinically, CBF-AML is caused by t(8; 21)(q22; q22), and inv(16)(p13.1; q22) or t(16; 16)(p13.1; q232), and is generally divided into t(8; 21)AML and inv(16)AML respectively. With conventional chemotherapy, CBF-AML is generally associated with a relatively favorable prognosis. Nevertheless, cumulative relapse rate may be up to 40% in adult patients with CBF-AML, which is the primary reason of treatment failure, and the major clinical problem to be resolved. As revealed by considerable experimental and clinical evidence, CBF-AML is quite heterogeneous in terms of clinical phenotypes, molecular cytogenetics and epigenetics. Therefore, it is of great clinical relevance to comprehensively analyze the types and frequencies of cooperating molecular cytogenetic aberrations in order to refine diagnostic stratification, to improve prognosis prediction, to select genetic-based novel targeted therapies, and to further improve the prognosis and reduce the recurrence rate of patients with CBF-AML. The current review will highlight recent experimental and clinical research findings in this particular type of de novo AML.

表1 核心结合因子急性髓系白血病并存遗传学异常及分布频率[例数(%)]
[1]
Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood, 2016, 127(20):2391-2405.
[2]
Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel[J]. Blood, 2017, 129(14):424-427.
[3]
Creutzig U, van den Heuvel-Eibrink MM, Gibson B, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel[J]. Blood, 2012, 120(16):3187-3205.
[4]
Sood R, Kamikubo Y, Liu P. Role of RUNX1 in hematological malignancies[J]. Blood, 2017, 129(15):2070-2082.
[5]
Lin S, Mulloy JC, Goyama S. RUNX1-ETO leukemia[J]. Adv Exp Med Biol, 2017, 962(2):151-173.
[6]
Castilla LH, Bushweller JH. Molecular basis and targeted inhibition of CBFβ-SMMHC acute myeloid leukemia[J]. Adv Exp Med Biol, 2017, 962(2):229-244.
[7]
Ito Y, Bae SC, Chuang LS. The RUNX family: developmental regulators in cancer[J]. Nat Rev Cancer, 2015, 15(2):81-95.
[8]
Bonier C, Levantini E, Kouskoff V, et al. Runx1 structure and function in blood cell development[J]. Adv Exp Med Biol,2017, 962(1):65-81.
[9]
DeBruijin M, Dzierzak E. Runx transcription factors in the development and function of the definitive hematopoietic system[J]. Blood, 2017, 129(15):2061-2069.
[10]
Chuang LS, Ito K, Ito Y. RUNX family: regulation and diversification of roles through interacting proteins[J]. Int J Cancer, 2013, 132(6):1260-1271.
[11]
Tahirov TH, Bushweller J. Structure and biophysics of CBFβ/RUNX and its translocation products[J]. Adv Exp Med Biol, 2017, 962(1):21-31.
[12]
Tober J, Maijenburg MW, Speck NA. Taking the leap: Runx1 in the formation of blood from endothelium[J]. Curr Top Dev Biol, 2016, 118(1):113-162.
[13]
Yonezawa T, Takahashi H, Shikata S, et al. The ubiquitin ligase STUB1 regulates stability and activity of RUNX1 and RUNX1-RUNX1T1[J]. J Biol Chem, 2017, 292(30):12528-12541.
[14]
Ugarte GD, Vargas MF, Medina MA, et al. Wnt signaling induces transcription, spatial proximity, and translocation of fusion gene partners in human hematopoietic cells[J]. Blood, 2015, 126(15):1785-1789.
[15]
Goyama S, Schibler J, Cunningham L, et al. Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells[J].J Clin Invest, 2013, 123(9):3876-3888.
[16]
Ben-Ami O, Friedman D, Leshkowitz D, et al. Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1[J]. Cell Reports, 2013, 4(6):1131-1143.
[17]
Li Y, Wang H, Wang X, et al. Genome-wide studies identify a novel interplay between AML1 and AML1/ETO in t(8;21)acute myeloid leukemia[J]. Blood, 2016, 127(2):233-242.
[18]
Chin DW, Watanabe-Okochi N, Wang CQ, et al. Mouse models for core binding factor leukemia[J]. Leukemia, 2015, 29(10):1970-1980.
[19]
Duployez N, Marceau-Renaut A, Boissel N, et al. Comprehensive mutational profiling of core binding factor acute myeloid leukemia[J]. Blood, 2016,127(20):2451-2459.
[20]
Krauth MT, Eder C, Alpermann T, et al. High number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcome[J]. Leukemia, 2014, 28(7):1449-1458.
[21]
Micol JB, Duployez N, Boissel N, et al. Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1chromosomal translocations[J]. Blood, 2014,124(9):1445-1449.
[22]
Duployez N, Willekens C, Marceau-Renaut A, et al. Prognosis and monitoring of core-binding factor acute myeloid leukemia: current and emerging factors[J]. Exp Rev Hematol, 2015, 8(1):43-56.
[23]
Metzeler KH, Bloomfield CD. Clinical relevance of RUNX1 and CBFB alterations in acute myeloid leukemia and other hematological disorders[J].Adv Exp Med Biol, 2017, 962(2):175-199.
[24]
Solh M, Yohe S, Weisdorf D, et al. Core-binding factor acute myeloid leukemia: heterogeneity, monitoring, and therapy[J]. Am J Hematol, 2014, 89(12):1121-1131.
[25]
Paschka P, Du J, Schlenk RF, et al. Secondary genetic lesions in acute myeloid leukemia with inv(16) or t(16;16): a study of the German-Austrian AML Study Group (AMLSG)[J]. Blood, 2013, 121(1):170-177.
[26]
Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia[J]. N Engl J Med, 2016, 374(23):2209-2221.
[27]
von Neuhoff C, Reinhardt D, Sander A, et al. Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98[J]. J Clin Oncol, 2010, 28(16):2682-2689.
[28]
Harrison CJ, Hills RK, Moorman AV, et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council treatment trials AML 10 and 12[J]. J Clin Oncol, 2010, 28(16):2673-2681.
[29]
Bhatt VR, Kantarjian H, Cortes JE, et al. Therapy of core binding factor acute myeloid leukemia: incremental improvements toward better long-term results[J]. Clin Lymphoma Myeloma Leuk, 2013, 13(2):153-158.
[30]
Hospital MA, Prebet T, Bertoli S, et al. Core-binding factor acute myeloid leukemia in first relapse: a retrospective study from the French AML Intergroup[J]. Blood, 2014, 124(8):1321-1329.
[31]
Forster VJ, Nahari MH, Martinez-Soria N, et al. The leukemia-associated RUNX1/ETO oncoprotein confers a mutator phenotype[J]. Leukemia, 2016, 30(1):250-253.
[32]
Marcucci G, Yan P, Maharry K, et al. Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score[J]. J Clin Oncol, 2014, 32(6):548-556.
[33]
Wilop S, Chou WC, Jost E, et al. A three-gene expression-based risk score can refine the European Leukemia Net AML classification[J]. J Hematol Oncol, 2016, 9(1):78.
[34]
Patel JP, Gönen M, Figueroa ME, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia[J]. N Engl J Med, 2012, 366(12):1079-1089.
[35]
Allen C, Hills RK, Lamb K, et al. The importance of relative mutant level for evaluating impact on outcome of KIT, FLT 3 and CBL mutations in core-binding factor acute myeloid leukemia[J]. Leukemia, 2013, 27(9):1891-1901.
[36]
Ayatollahi H, Shajiei A, Sadeghian MH, et al. Prognostic importance of c-kit mutations in core binding factor acute myeloid leukemia: a systematic review[J]. Hematol Oncol Stem Cell Ther, 2017, 10(1):1-7.
[37]
Sinha C, Cunningham LC, Liu PP. Core binding factor AML: new prognostic categories and therapeutic opportunities[J]. Semin Hematol, 2015, 52(3):215-222.
[38]
Goyama S, Mulloy JC. Molecular pathogenesis of core binding factor leukemia: current knowledge and future prospects[J]. Int J Hematol, 2011, 94(2):126-133.
[39]
Cunningham L, Finckbeiner S, Hyde RK, et al. Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1-CBFβ interaction[J]. PNAS USA, 2012, 109(36):14592-14597.
[40]
Illendula A, Gilmour J, Grembecka J, et al. Small molecule inhibitor of CBFβ-RUNX binding for RUNX transcription factor driven cancers[J]. EBioMedicine, 2016, 8(1):117-131.
[41]
Illendula A, Pulikkan JA, Zong H, et al. Chemical biology. A small-molecule inhibitor of the aberrant transcription factor CBFβ-SMMHC delays leukemia in mice[J]. Science, 2015, 347(6223):779-784
[42]
Perl AE. The role of targeted therapy in the management of patients with AML[J]. Blood Adv, 2017, 1(24):2281-2294.
[43]
Dombret H, Gardin C. An update of current treatments for adult acute myeloid leukemia[J]. Blood, 2016, 127(1):53-61.
[44]
Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation[J]. N Engl J Med, 2017, 377(5):454-464.
[45]
Levis M. Midostaurin approved for FLT3-mutated AML[J]. Blood, 2017, 129(26):3403-3406
[46]
Burnett AK, Hills RK, Milligan D, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial[J]. J Clin Oncol, 2011, 29(4):369-377.
[47]
Gamis AS, Alonzo TA, Meshinchi S, et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: results from the randomized phase Ⅲ Children′s Oncology Group trial AAML0531[J]. J Clin Oncol, 2014, 32(27):3021-3032.
[48]
Hills RK, Castaigne S, Appelbaum FR, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a Meta-analysis of individual patient data from randomised controlled trials[J]. Lancet Oncol, 2014, 15(9):986-996.
[49]
Thomas X. DNA methyltransferase inhibitors in acute myeloid leukemia: discovery, design and first therapeutic experiences[J]. Exp Opin Drug Discov, 2012, 7(11):1039-1051.
[50]
Bots M, Verbrugge I, Martin BP, et al. Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors[J]. Blood, 2014, 123(9):1341-1352.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 蒋佳纯, 王晓冰, 陈培荣, 许世豪. 血清学指标联合常规超声及超声造影评分诊断原发性干燥综合征的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 622-630.
[3] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[4] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[5] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[6] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[7] 杨雪, 张伟, 尚培中, 宋创业, 尚丹丹, 张蔚. 胆囊十二指肠瘘结石经瘘口排出后自愈一例报道[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 707-708.
[8] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[9] 杨红杰, 张智春, 孙轶. 直肠癌淋巴结转移诊断研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 512-518.
[10] 赵立力, 王魁向, 张小冲, 李志远. 血沉与C-反应蛋白比值在假体周围感染中的诊断价值分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 351-355.
[11] 吴凤芸, 滕鑫, 刘连娟. 高帧频超声造影与增强磁共振对不同直径原发性高分化肝细胞癌的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 404-408.
[12] 孙欣欣, 刘军, 陈超伍, 孙超. 超声内镜引导细针穿刺抽吸术在胰腺占位性病变中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 418-421.
[13] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[14] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[15] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
阅读次数
全文


摘要