[1] |
Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood, 2016, 127(20):2391-2405.
|
[2] |
Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel[J]. Blood, 2017, 129(14):424-427.
|
[3] |
Creutzig U, van den Heuvel-Eibrink MM, Gibson B, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel[J]. Blood, 2012, 120(16):3187-3205.
|
[4] |
Sood R, Kamikubo Y, Liu P. Role of RUNX1 in hematological malignancies[J]. Blood, 2017, 129(15):2070-2082.
|
[5] |
Lin S, Mulloy JC, Goyama S. RUNX1-ETO leukemia[J]. Adv Exp Med Biol, 2017, 962(2):151-173.
|
[6] |
Castilla LH, Bushweller JH. Molecular basis and targeted inhibition of CBFβ-SMMHC acute myeloid leukemia[J]. Adv Exp Med Biol, 2017, 962(2):229-244.
|
[7] |
Ito Y, Bae SC, Chuang LS. The RUNX family: developmental regulators in cancer[J]. Nat Rev Cancer, 2015, 15(2):81-95.
|
[8] |
Bonier C, Levantini E, Kouskoff V, et al. Runx1 structure and function in blood cell development[J]. Adv Exp Med Biol,2017, 962(1):65-81.
|
[9] |
DeBruijin M, Dzierzak E. Runx transcription factors in the development and function of the definitive hematopoietic system[J]. Blood, 2017, 129(15):2061-2069.
|
[10] |
Chuang LS, Ito K, Ito Y. RUNX family: regulation and diversification of roles through interacting proteins[J]. Int J Cancer, 2013, 132(6):1260-1271.
|
[11] |
Tahirov TH, Bushweller J. Structure and biophysics of CBFβ/RUNX and its translocation products[J]. Adv Exp Med Biol, 2017, 962(1):21-31.
|
[12] |
Tober J, Maijenburg MW, Speck NA. Taking the leap: Runx1 in the formation of blood from endothelium[J]. Curr Top Dev Biol, 2016, 118(1):113-162.
|
[13] |
Yonezawa T, Takahashi H, Shikata S, et al. The ubiquitin ligase STUB1 regulates stability and activity of RUNX1 and RUNX1-RUNX1T1[J]. J Biol Chem, 2017, 292(30):12528-12541.
|
[14] |
Ugarte GD, Vargas MF, Medina MA, et al. Wnt signaling induces transcription, spatial proximity, and translocation of fusion gene partners in human hematopoietic cells[J]. Blood, 2015, 126(15):1785-1789.
|
[15] |
Goyama S, Schibler J, Cunningham L, et al. Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells[J].J Clin Invest, 2013, 123(9):3876-3888.
|
[16] |
Ben-Ami O, Friedman D, Leshkowitz D, et al. Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1[J]. Cell Reports, 2013, 4(6):1131-1143.
|
[17] |
Li Y, Wang H, Wang X, et al. Genome-wide studies identify a novel interplay between AML1 and AML1/ETO in t(8;21)acute myeloid leukemia[J]. Blood, 2016, 127(2):233-242.
|
[18] |
Chin DW, Watanabe-Okochi N, Wang CQ, et al. Mouse models for core binding factor leukemia[J]. Leukemia, 2015, 29(10):1970-1980.
|
[19] |
Duployez N, Marceau-Renaut A, Boissel N, et al. Comprehensive mutational profiling of core binding factor acute myeloid leukemia[J]. Blood, 2016,127(20):2451-2459.
|
[20] |
Krauth MT, Eder C, Alpermann T, et al. High number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcome[J]. Leukemia, 2014, 28(7):1449-1458.
|
[21] |
Micol JB, Duployez N, Boissel N, et al. Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1chromosomal translocations[J]. Blood, 2014,124(9):1445-1449.
|
[22] |
Duployez N, Willekens C, Marceau-Renaut A, et al. Prognosis and monitoring of core-binding factor acute myeloid leukemia: current and emerging factors[J]. Exp Rev Hematol, 2015, 8(1):43-56.
|
[23] |
Metzeler KH, Bloomfield CD. Clinical relevance of RUNX1 and CBFB alterations in acute myeloid leukemia and other hematological disorders[J].Adv Exp Med Biol, 2017, 962(2):175-199.
|
[24] |
Solh M, Yohe S, Weisdorf D, et al. Core-binding factor acute myeloid leukemia: heterogeneity, monitoring, and therapy[J]. Am J Hematol, 2014, 89(12):1121-1131.
|
[25] |
Paschka P, Du J, Schlenk RF, et al. Secondary genetic lesions in acute myeloid leukemia with inv(16) or t(16;16): a study of the German-Austrian AML Study Group (AMLSG)[J]. Blood, 2013, 121(1):170-177.
|
[26] |
Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia[J]. N Engl J Med, 2016, 374(23):2209-2221.
|
[27] |
von Neuhoff C, Reinhardt D, Sander A, et al. Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98[J]. J Clin Oncol, 2010, 28(16):2682-2689.
|
[28] |
Harrison CJ, Hills RK, Moorman AV, et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council treatment trials AML 10 and 12[J]. J Clin Oncol, 2010, 28(16):2673-2681.
|
[29] |
Bhatt VR, Kantarjian H, Cortes JE, et al. Therapy of core binding factor acute myeloid leukemia: incremental improvements toward better long-term results[J]. Clin Lymphoma Myeloma Leuk, 2013, 13(2):153-158.
|
[30] |
Hospital MA, Prebet T, Bertoli S, et al. Core-binding factor acute myeloid leukemia in first relapse: a retrospective study from the French AML Intergroup[J]. Blood, 2014, 124(8):1321-1329.
|
[31] |
Forster VJ, Nahari MH, Martinez-Soria N, et al. The leukemia-associated RUNX1/ETO oncoprotein confers a mutator phenotype[J]. Leukemia, 2016, 30(1):250-253.
|
[32] |
Marcucci G, Yan P, Maharry K, et al. Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score[J]. J Clin Oncol, 2014, 32(6):548-556.
|
[33] |
Wilop S, Chou WC, Jost E, et al. A three-gene expression-based risk score can refine the European Leukemia Net AML classification[J]. J Hematol Oncol, 2016, 9(1):78.
|
[34] |
Patel JP, Gönen M, Figueroa ME, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia[J]. N Engl J Med, 2012, 366(12):1079-1089.
|
[35] |
Allen C, Hills RK, Lamb K, et al. The importance of relative mutant level for evaluating impact on outcome of KIT, FLT 3 and CBL mutations in core-binding factor acute myeloid leukemia[J]. Leukemia, 2013, 27(9):1891-1901.
|
[36] |
Ayatollahi H, Shajiei A, Sadeghian MH, et al. Prognostic importance of c-kit mutations in core binding factor acute myeloid leukemia: a systematic review[J]. Hematol Oncol Stem Cell Ther, 2017, 10(1):1-7.
|
[37] |
Sinha C, Cunningham LC, Liu PP. Core binding factor AML: new prognostic categories and therapeutic opportunities[J]. Semin Hematol, 2015, 52(3):215-222.
|
[38] |
Goyama S, Mulloy JC. Molecular pathogenesis of core binding factor leukemia: current knowledge and future prospects[J]. Int J Hematol, 2011, 94(2):126-133.
|
[39] |
Cunningham L, Finckbeiner S, Hyde RK, et al. Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1-CBFβ interaction[J]. PNAS USA, 2012, 109(36):14592-14597.
|
[40] |
Illendula A, Gilmour J, Grembecka J, et al. Small molecule inhibitor of CBFβ-RUNX binding for RUNX transcription factor driven cancers[J]. EBioMedicine, 2016, 8(1):117-131.
|
[41] |
Illendula A, Pulikkan JA, Zong H, et al. Chemical biology. A small-molecule inhibitor of the aberrant transcription factor CBFβ-SMMHC delays leukemia in mice[J]. Science, 2015, 347(6223):779-784
|
[42] |
Perl AE. The role of targeted therapy in the management of patients with AML[J]. Blood Adv, 2017, 1(24):2281-2294.
|
[43] |
Dombret H, Gardin C. An update of current treatments for adult acute myeloid leukemia[J]. Blood, 2016, 127(1):53-61.
|
[44] |
Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation[J]. N Engl J Med, 2017, 377(5):454-464.
|
[45] |
Levis M. Midostaurin approved for FLT3-mutated AML[J]. Blood, 2017, 129(26):3403-3406
|
[46] |
Burnett AK, Hills RK, Milligan D, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial[J]. J Clin Oncol, 2011, 29(4):369-377.
|
[47] |
Gamis AS, Alonzo TA, Meshinchi S, et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: results from the randomized phase Ⅲ Children′s Oncology Group trial AAML0531[J]. J Clin Oncol, 2014, 32(27):3021-3032.
|
[48] |
Hills RK, Castaigne S, Appelbaum FR, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a Meta-analysis of individual patient data from randomised controlled trials[J]. Lancet Oncol, 2014, 15(9):986-996.
|
[49] |
Thomas X. DNA methyltransferase inhibitors in acute myeloid leukemia: discovery, design and first therapeutic experiences[J]. Exp Opin Drug Discov, 2012, 7(11):1039-1051.
|
[50] |
Bots M, Verbrugge I, Martin BP, et al. Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors[J]. Blood, 2014, 123(9):1341-1352.
|