[1] |
Ahmed N, Abubaker K, Findlay JK. Ovarian cancer stem cells: molecular concepts and relevance as therapeutic targets[J]. Mol Aspects Med, 2014, 39: 110-125.
|
[2] |
Makino S. The role of tumor stem-cells in regrowth of the tumor following drastic applications[J]. Acta Unio Int Contra Cancrum, 1959, 15(Suppl 1): 196-198.
|
[3] |
Beck B, Driessens G, Goossens S, et al. A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours[J]. Nature, 2011, 478(7369): 399-403.
|
[4] |
Malanchi I, Santamaria-Martínez A, Susanto E, et al. Interactions between cancer stem cells and their niche govern metastatic colonization[J]. Nature, 2011, 481(7379): 85-89.
|
[5] |
Koh MY, Lemos R Jr, Liu X, et al. The hypoxia-associated factor switches cells from HIF-1α- to HIF-2α-dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion[J]. Cancer Res, 2011, 71(11): 4015-4027.
|
[6] |
Gupta PB, Fillmore CM, Jiang G, et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells[J]. Cell, 2011, 146(4): 633-644.
|
[7] |
Bapat SA, Mali AM, Koppikar CB, et al. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer[J]. Cancer Res, 2005, 65(8): 3025-3029.
|
[8] |
Flesken-Nikitin A, Hwang CI, Cheng CY, et al. Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche[J]. Nature, 2013, 495(7440): 241-245.
|
[9] |
Levanon K, Ng V, Piao HY, et al. Primary ex vivo cultures of human fallopian tube epithelium as a model for serous ovarian carcinogenesis[J]. Oncogene, 2010, 29(8): 1103-1113.
|
[10] |
Medema JP, Vermeulen L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer[J]. Nature, 2011, 474(7351): 318-326.
|
[11] |
Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, et al. Ovarian cancer side population defines cells with stem cell-like characteristics and mullerian inhibiting substance responsiveness[J]. Proc Natl Acad Sci U S A, 2006, 103(30): 11154-11159.
|
[12] |
Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line[J]. Proc Natl Acad Sci U S A, 2004, 101(3): 781-786.
|
[13] |
Liu T, Cheng W, Lai D, et al. Characterization of primary ovarian cancer cells in different culture systems[J]. Oncol Rep, 2010, 23(5): 1277-1284.
|
[14] |
Ma L, Lai D, Liu T, et al. Cancer stem-like cells can be isolated with drug selection in human ovarian cancer cell line SKOV3[J]. Acta Biochim Biophys Sin (Shanghai), 2010, 42(9): 593-602.
|
[15] |
Zhang S, Balch C, Chan MW, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors[J]. Cancer Res, 2008, 68(11): 4311-4320.
|
[16] |
蒋立艳,楼湘莹,王自能,等. CD133+卵巢癌干细胞样细胞在血管内皮细胞中的分化[J]. 中国组织工程研究,2015, 19(41): 6623-6627.
|
[17] |
杨丽萍,侯俊德,段爱红,等.肿瘤干细胞标志物CD133和Nestin在卵巢癌中的表达及意义[J].临床和实验医学杂志,2015,14(4): 301-304.
|
[18] |
敬宏,牛晓宇,陈亚丽,等. Numb蛋白在上皮性卵巢癌中的表达及其与CD117、CD133、ALDH1的关系[J]. 四川大学学报(医学版), 2016, 47(6):878-882.
|
[19] |
范秀丽,卞翠翠,董怡,等.ALDH1作为卵巢癌干细胞标志物的实验研究[J].中国老年学杂志,2015(12): 3266-3268.
|
[20] |
Yip NC, Fombon IS, Liu P, et al. Disulfiram modulated ROS-MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties[J]. Br J Cancer, 2011, 104(10): 1564-1574.
|
[21] |
Parrott JA, Kim G, Skinner MK. Expression and action of kit ligand/stem cell factor in normal human and bovine ovarian surface epithelium and ovarian cancer[J]. Biol Reprod, 2000, 62(6): 1600-1609.
|
[22] |
Gao MQ, Choi YP, Kang S, et al. CD24+cells from hierarchically organized ovarian cancer are enriched in cancer stem cells[J]. Oncogene, 2010, 29(18): 2672-2680.
|
[23] |
Oktem G, Sanci M, Bilir A, et al. Cancer stem cell and embryonic development-associated molecules contribute to prognostic significance in ovarian cancer[J]. Int J Gynecol Cancer, 2012, 22(1): 23-29.
|
[24] |
Mc Auliffe SM, Morgan SL, Wyant GA, et al. Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy[J]. Proc Natl Acad Sci USA, 2012, 109(43): E2939-E2948.
|
[25] |
Jan YN, Jan LY. Asymmetric cell division[J]. Nature, 1998, 392(6678): 775-778.
|
[26] |
万健,唐喜才,冯斌,等. 原发性肝癌中Numb和VEGF的表达及临床意义[J]. 中国普通外科杂志,2015,24(1):335-339.
|
[27] |
曾蕴林,绍喜明,李华顺. 膜相关蛋白Numb在结肠癌中的表达和意义[J]. 四川大学学报(医学版),2012, 43(1):326-330.
|
[28] |
张晴晴,李连宏. 细胞生长分化及肿瘤形成中Numb的作用[J]. 临床与实验病理学杂志,2012,28(11):216-218.
|
[29] |
陈小君,叶枫,陈怀增,等.细胞分裂方向的改变和Numb的表达增高在宫颈鳞癌中的作用[J].实用癌症杂志,2005,20(5): 455-457.
|
[30] |
Colaluca IN, Tosoni D, Nuciforo P, et al. NUMB controls p53 tumour suppressor activity[J]. Nature, 2008, 451(7174): 76-80.
|
[31] |
敬宏,郑艾,牛晓宇. 膜相关蛋白Numb在上皮性卵巢癌中的表达及其与耐药相关蛋白P糖蛋白、多药耐药相关蛋白1的关系[J/CD]. 中华妇幼临床医学杂志(电子版), 2015, 11(3): 323-328.
|
[32] |
Kipps E, Tan DS, Kaye SB. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research[J]. Nat Rev Cancer, 2013, 13(4): 273-282.
|
[33] |
Mc Clements L, Yakkundi A, Papaspyropoulos A, et al. Targeting treatment resistant breast cancer stem cells with FKBPL and its peptide derivative, AD-01, via the CD44 pathway[J]. Clin Cancer Res, 2013, 19(14): 3881-3893.
|
[34] |
Yang X, Sarvestani SK, Moeinzadeh S, et al. Effect of CD44 binding peptide conjugated to an engineered inert matrix on maintenance of breast cancer stem cells and tumorsphere formation[J]. PLoS One, 2013, 8(3): e59147.
|
[35] |
徐泽宽,徐皓. 甲磺酸伊马替尼血药浓度监测对指导胃肠间质瘤治疗及评估预后临床意义[J]. 中国实用外科杂志, 2015, 35(4): 387-390.
|
[36] |
张阔,陈燕. 甲磺酸伊马替尼增加顺铂对耐药卵巢癌细胞作用的研究[J]. 实用药物与临床,2014, 17(9): 1096-1099.
|
[37] |
Schilder RJ, Sill MW, Lee RB, et al. Phase Ⅱ evaluation of imatinib mesylate in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group Study[J]. J Clin Oncol, 2008, 26(20): 3418-3425.
|
[38] |
Safra T, Andreopoulou E, Levinson B, et al. Weekly paclitaxel with intermittent imatinib mesylate (Gleevec): tolerance and activity in recurrent epithelial ovarian cancer[J]. Anticancer Res, 2010, 30(9): 3243-3247.
|
[39] |
Choi SA, Choi JW, Wang KC, et al. Disulfiram modulates stemness and metabolism of brain tumor initiating cells in atypical teratoid/rhabdoid tumors[J]. Neuro Oncol, 2015, 17(6): 810-821.
|
[40] |
Chiba T, Suzuki E, Yuki K, et al. Disulfiram eradicates tumor-initiating hepatocellular carcinoma cells in ROS-p38 MAPK pathway-dependent and -independent manners[J]. PLoS One, 2014, 9(1): e84807.
|
[41] |
Liu P, Brown S, Goktug T, et al. Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells[J]. Br J Cancer, 2012, 107(9): 1488-1497.
|
[42] |
Cheriyan VT, Wang Y, Muthu M, et al. Disulfiram suppresses growth of the malignant pleural mesothelioma cells in part by inducing apoptosis[J]. PLoS One, 2014, 9(4): e93711.
|
[43] |
Liu P, Kumar IS, Brown S, et al. Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells[J]. Br J Cancer, 2013, 109(7): 1876-1885.
|
[44] |
Robinson TJ, Pai M, Liu JC, et al. High-throughput screen identifies disulfiram as a potential therapeutic for triple-negative breast cancer cells: interaction with IQ motif-containing factors[J]. Cell Cycle, 2013, 12(18): 3013-3024.
|