切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2016, Vol. 12 ›› Issue (05) : 613 -616. doi: 10.3877/cma.j.issn.1673-5250.2016.05.022

所属专题: 文献

综述

可控性坏死在缺血再灌注损伤中作用的研究进展
孟俊杰1, 甘靖1   
  1. 1. 610041 成都,四川大学华西第二医院儿科、出生缺陷与相关妇儿疾病教育部重点实验室、发育与妇儿疾病四川省重点实验室
  • 收稿日期:2016-05-20 修回日期:2016-07-14 出版日期:2016-10-01

Research progress of roles of regulated necrosis in ischemia reperfusion injury

Junjie Meng1, Jing Gan1   

  1. 1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Key Laboratory of Development and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2016-05-20 Revised:2016-07-14 Published:2016-10-01
  • About author:
    Corresponding author: Qu Yi, Email:
引用本文:

孟俊杰, 甘靖. 可控性坏死在缺血再灌注损伤中作用的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2016, 12(05): 613-616.

Junjie Meng, Jing Gan. Research progress of roles of regulated necrosis in ischemia reperfusion injury[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2016, 12(05): 613-616.

缺血再灌注是多种器官系统疾病的重要病理生理过程,而可控性坏死在缺血再灌注损伤中发挥着重要作用。笔者拟就3种可控性坏死相关分子机制及其在缺血再灌注损伤疾病中的作用进行综述如下,旨在为新生儿缺氧缺血性脑病等治疗提供新思路。

Ischemia-reperfusion is a critical pathophysiological progress in many diseases involved in different organisms and systems. Regulated necrosis plays crucial roles in ischemia-reperfusion injury. This paper focuses on 3 types of regulated necrosis and their roles in related ischemia-reperfusion diseases, which may provide a new insight into hypoxic-ischemic encephalopathy of neonatus.

[1]
VandenBT, GrootjansS, GoossensV, et al. Determination of apoptotic and necrotic cell death in vitro and in vivo[J]. Methods, 2013, 61(2): 117-129.
[2]
LinkermannA, GreenDR. Necroptosis[J]. New Engl J Med, 2014, 370(5): 455-465.
[3]
CaiZ, JitkaewS, ZhaoJ, et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis[J]. Nat Cell Biol, 2014, 16(1): 55-65.
[4]
XieT, PengW, LiuY, et al. Structural basis of RIP1 inhibition by necrostatins[J]. Structure, 2013, 21(3): 493-499.
[5]
DegterevA, ZhouW, MakiJL, et al. Assays for necroptosis and activity of RIP kinases[J]. Methods Enzymol, 2014, 545: 1-33.
[6]
SavardA, BrochuME, ChevinM, et al. Neuronal self-injury mediated by IL-1β and MMP-9 in a cerebral palsy model of severe neonatal encephalopathy induced by immune activation plus hypoxia-ischemia[J]. J Neu, 2015, 12(1): 111-125.
[7]
YinB, XuY, WeiR, et al. Inhibition of receptor-interacting protein 3 upregulation and nuclear translocation involved in Necrostatin-1 protection against hippocampal neuronal programmed necrosis induced by ischemia/reperfusion injury[J]. Brain Res, 2015, 1609: 63-71.
[8]
LauA, WangS, JiangJ, et al. RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival[J]. Am J Transplant, 2013, 13(11): 2805-2818.
[9]
HalestrapAP, RichardsonAP. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury[J]. J Mol Cell Cardiol, 2015, 78: 129-141.
[10]
ParkJS, PasupulatiR, FeldkampT, et al. Cyclophilin D and the mitochondrial permeability transition in kidney proximal tubules after hypoxic and ischemic injury[J]. Am J Physiol Renal Physiol, 2011, 301(1): F134-F150.
[11]
FuH, ChenH, WangC, et al. Flurbiprofen, a cyclooxygenase inhibitor, protects mice from hepatic ischemia/reperfusion injury by inhibiting GSK-3b signaling and mitochondrial permeability transition[J]. Mol Med, 2012, 18: 1128-1135.
[12]
HalestrapAP, RichardsonAP. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury[J]. J Mol Cell Cardiol, 2015, 78: 129-141.
[13]
GalluzziL, KeppO, KrautwaldS, et al. Molecular mechanisms of regulated necrosis[J]. Semin Cell Dev Biol, 2014, 35: 24-32.
[14]
ChaudhuriAD, ChoiDC, KabariaS, et al. MicroRNA-7 regulates the function of mitochondrial permeability transition pore by targeting VDAC1[J]. J Biol Chem, 2016, 291(12): 6483-6493.
[15]
FatokunAA, DawsonVL, DawsonTM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities[J]. Br J Pharmacol, 2014, 171(8): 2000-2016.
[16]
杨瑞杰. 参附注射液化学成分研究[D]. 长春:吉林大学,2012.
[17]
SunJ, LiYZ, DingYH, et al. Neuroprotective effects of gallic acid against hypoxia/reoxygenation-induced mitochondrial dysfunctions in vitro and cerebral ischemia/reperfusion injury in vivo[J]. Brain Res, 2014, 1589: 126-139.
[18]
LiYH, LiYY, FanGW, et al. Cardioprotection of ginsenoside Rb1 against ischemia/reperfusion injury is associated with mitochondrial permeability transition pore opening inhibition[J]. Chin J Integr Med, 2016, 21(2): 1-10.
[19]
NakajimaH, KuboT, IharaH, et al. Nuclear-translocated glyceraldehyde-3-phosphate dehydrogenase promotes poly (ADP-ribose) polymerase-1 activation during oxidative/nitrosative stress in stroke[J]. J Biol Chem, 2015, 290(23): 14493-14503.
[20]
YoonSP, KimJ. Poly (ADP-ribose) polymerase 1 activation links ischemic acute kidney injury to interstitial fibrosis[J]. J Physiol Sci, 2015, 65(1): 105-111.
[21]
ZhangF, XieR, MunozF, et al. Parp-1 hyperactivation and reciprocal elevations in intracellular Ca2+ during ros-induced non-apoptotic cell death[J]. Toxicol Sci, 2014, 140(1): 118-134.
[22]
ZhaoH, NingJ, LemaireA, et al. Necroptosis and parthanatos are involved in remote lung injury after receiving ischemic renal allografts in rats[J]. Kidney Int, 2015, 87(4): 738-748.
[23]
RosentreterD, FunkenD, ReifartJ, et al. RIP1-dependent programmed necrosis is negatively regulated by caspases during hepatic ischemia-reperfusion[J]. Shock, 2015, 44(1): 72-76.
[24]
ZhangT, ZhangY, CuiM, et al. CaMKⅡ is a RIP3 substrate mediating ischemia-and oxidative stress-induced myocardial necroptosis[J]. Nat Med, 2016, 22(2): 175-182.
[1] 许正文, 李振, 侯振扬, 苏长征, 朱彪. 富血小板血浆联合植骨治疗早期非创伤性股骨头坏死[J]. 中华关节外科杂志(电子版), 2023, 17(06): 773-779.
[2] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[3] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[4] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[5] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[6] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[7] 黄应雄, 叶子, 蒋鹏, 詹红, 姚陈, 崔冀. 急性肠系膜静脉血栓形成致透壁性肠坏死的临床危险因素分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 413-421.
[8] 赵海剑, 赵欣, 陈宁, 王健, 朱伦, 张晓雨, 黎珩. 不同状态小肠水通道蛋白3的表达分析及其临床意义[J]. 中华普通外科学文献(电子版), 2023, 17(05): 342-345.
[9] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[10] 何彬, 王静. 彩色多普勒超声血流参数、血清尿酸、胱抑素C对短暂性脑缺血发作患者颈动脉狭窄的诊断价值[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 289-294.
[11] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[12] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[13] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[14] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[15] 张许平, 刘佳成, 张舸, 杜艳姣, 李韶, 商丹丹, 王浩, 李艳, 段智慧. CYP2C19基因多态性联合血栓弹力图指导大动脉粥样硬化型非致残性缺血性脑血管事件患者抗血小板治疗的效果[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 477-481.
阅读次数
全文


摘要