切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2016, Vol. 12 ›› Issue (05) : 613 -616. doi: 10.3877/cma.j.issn.1673-5250.2016.05.022

所属专题: 文献

综述

可控性坏死在缺血再灌注损伤中作用的研究进展
孟俊杰1, 甘靖1   
  1. 1. 610041 成都,四川大学华西第二医院儿科、出生缺陷与相关妇儿疾病教育部重点实验室、发育与妇儿疾病四川省重点实验室
  • 收稿日期:2016-05-20 修回日期:2016-07-14 出版日期:2016-10-01

Research progress of roles of regulated necrosis in ischemia reperfusion injury

Junjie Meng1, Jing Gan1   

  1. 1. Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Key Laboratory of Development and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2016-05-20 Revised:2016-07-14 Published:2016-10-01
  • About author:
    Corresponding author: Qu Yi, Email:
引用本文:

孟俊杰, 甘靖. 可控性坏死在缺血再灌注损伤中作用的研究进展[J/OL]. 中华妇幼临床医学杂志(电子版), 2016, 12(05): 613-616.

Junjie Meng, Jing Gan. Research progress of roles of regulated necrosis in ischemia reperfusion injury[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2016, 12(05): 613-616.

缺血再灌注是多种器官系统疾病的重要病理生理过程,而可控性坏死在缺血再灌注损伤中发挥着重要作用。笔者拟就3种可控性坏死相关分子机制及其在缺血再灌注损伤疾病中的作用进行综述如下,旨在为新生儿缺氧缺血性脑病等治疗提供新思路。

Ischemia-reperfusion is a critical pathophysiological progress in many diseases involved in different organisms and systems. Regulated necrosis plays crucial roles in ischemia-reperfusion injury. This paper focuses on 3 types of regulated necrosis and their roles in related ischemia-reperfusion diseases, which may provide a new insight into hypoxic-ischemic encephalopathy of neonatus.

[1]
VandenBT, GrootjansS, GoossensV, et al. Determination of apoptotic and necrotic cell death in vitro and in vivo[J]. Methods, 2013, 61(2): 117-129.
[2]
LinkermannA, GreenDR. Necroptosis[J]. New Engl J Med, 2014, 370(5): 455-465.
[3]
CaiZ, JitkaewS, ZhaoJ, et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis[J]. Nat Cell Biol, 2014, 16(1): 55-65.
[4]
XieT, PengW, LiuY, et al. Structural basis of RIP1 inhibition by necrostatins[J]. Structure, 2013, 21(3): 493-499.
[5]
DegterevA, ZhouW, MakiJL, et al. Assays for necroptosis and activity of RIP kinases[J]. Methods Enzymol, 2014, 545: 1-33.
[6]
SavardA, BrochuME, ChevinM, et al. Neuronal self-injury mediated by IL-1β and MMP-9 in a cerebral palsy model of severe neonatal encephalopathy induced by immune activation plus hypoxia-ischemia[J]. J Neu, 2015, 12(1): 111-125.
[7]
YinB, XuY, WeiR, et al. Inhibition of receptor-interacting protein 3 upregulation and nuclear translocation involved in Necrostatin-1 protection against hippocampal neuronal programmed necrosis induced by ischemia/reperfusion injury[J]. Brain Res, 2015, 1609: 63-71.
[8]
LauA, WangS, JiangJ, et al. RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival[J]. Am J Transplant, 2013, 13(11): 2805-2818.
[9]
HalestrapAP, RichardsonAP. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury[J]. J Mol Cell Cardiol, 2015, 78: 129-141.
[10]
ParkJS, PasupulatiR, FeldkampT, et al. Cyclophilin D and the mitochondrial permeability transition in kidney proximal tubules after hypoxic and ischemic injury[J]. Am J Physiol Renal Physiol, 2011, 301(1): F134-F150.
[11]
FuH, ChenH, WangC, et al. Flurbiprofen, a cyclooxygenase inhibitor, protects mice from hepatic ischemia/reperfusion injury by inhibiting GSK-3b signaling and mitochondrial permeability transition[J]. Mol Med, 2012, 18: 1128-1135.
[12]
HalestrapAP, RichardsonAP. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury[J]. J Mol Cell Cardiol, 2015, 78: 129-141.
[13]
GalluzziL, KeppO, KrautwaldS, et al. Molecular mechanisms of regulated necrosis[J]. Semin Cell Dev Biol, 2014, 35: 24-32.
[14]
ChaudhuriAD, ChoiDC, KabariaS, et al. MicroRNA-7 regulates the function of mitochondrial permeability transition pore by targeting VDAC1[J]. J Biol Chem, 2016, 291(12): 6483-6493.
[15]
FatokunAA, DawsonVL, DawsonTM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities[J]. Br J Pharmacol, 2014, 171(8): 2000-2016.
[16]
杨瑞杰. 参附注射液化学成分研究[D]. 长春:吉林大学,2012.
[17]
SunJ, LiYZ, DingYH, et al. Neuroprotective effects of gallic acid against hypoxia/reoxygenation-induced mitochondrial dysfunctions in vitro and cerebral ischemia/reperfusion injury in vivo[J]. Brain Res, 2014, 1589: 126-139.
[18]
LiYH, LiYY, FanGW, et al. Cardioprotection of ginsenoside Rb1 against ischemia/reperfusion injury is associated with mitochondrial permeability transition pore opening inhibition[J]. Chin J Integr Med, 2016, 21(2): 1-10.
[19]
NakajimaH, KuboT, IharaH, et al. Nuclear-translocated glyceraldehyde-3-phosphate dehydrogenase promotes poly (ADP-ribose) polymerase-1 activation during oxidative/nitrosative stress in stroke[J]. J Biol Chem, 2015, 290(23): 14493-14503.
[20]
YoonSP, KimJ. Poly (ADP-ribose) polymerase 1 activation links ischemic acute kidney injury to interstitial fibrosis[J]. J Physiol Sci, 2015, 65(1): 105-111.
[21]
ZhangF, XieR, MunozF, et al. Parp-1 hyperactivation and reciprocal elevations in intracellular Ca2+ during ros-induced non-apoptotic cell death[J]. Toxicol Sci, 2014, 140(1): 118-134.
[22]
ZhaoH, NingJ, LemaireA, et al. Necroptosis and parthanatos are involved in remote lung injury after receiving ischemic renal allografts in rats[J]. Kidney Int, 2015, 87(4): 738-748.
[23]
RosentreterD, FunkenD, ReifartJ, et al. RIP1-dependent programmed necrosis is negatively regulated by caspases during hepatic ischemia-reperfusion[J]. Shock, 2015, 44(1): 72-76.
[24]
ZhangT, ZhangY, CuiM, et al. CaMKⅡ is a RIP3 substrate mediating ischemia-and oxidative stress-induced myocardial necroptosis[J]. Nat Med, 2016, 22(2): 175-182.
[1] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[2] 党军强, 杨雁灵, 汪庆强, 尚琳, 朱磊, 项红军. 主动经皮穿刺引流治疗重症急性胰腺炎并发急性坏死物积聚的疗效分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 671-674.
[3] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[4] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[5] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[6] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[7] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[8] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[9] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[10] 张琛, 秦鸣, 董娟, 陈玉龙. 超声检查对儿童肠扭转缺血性改变的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 565-568.
[11] 杨卫东, 周威, 向洪涛. 慢性萎缩性胃炎患者幽门螺杆菌感染与炎性细胞因子及病理特征的关系[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 459-464.
[12] 李润东, 豆小文, 张秀明. 失笑散联合胃复春治疗慢性萎缩性胃炎的疗效及对血清免疫受体和炎症因子水平的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 470-473.
[13] 贾玲玲, 滕飞, 常键, 黄福, 刘剑萍. 心肺康复在各种疾病中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 859-862.
[14] 张耕毓, 唐冲, 张昆, 张辉, 张清华, 刘家帮. 股骨头坏死髓芯减压术的文献计量学分析及单中心病例报道[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 771-780.
[15] 耿晓坤. 缺血性卒中后无效再灌注的时间窗、组织窗与神经保护[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 636-636.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?