切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2016, Vol. 12 ›› Issue (02) : 179 -183. doi: 10.3877/cma.j.issn.1673-5250.2016.02.009

所属专题: 文献

论著

高氧暴露对新生SD大鼠肺泡内白细胞介素-8及肿瘤坏死因子-α含量的影响
李芳芳1, 魏学功1,*,*(), 王霞1, 韩素灿1, 张传厚1, 张先娟1, 李莉1   
  1. 1. 256603 山东,滨州医学院附属医院产科
  • 收稿日期:2015-09-11 修回日期:2016-03-01 出版日期:2016-04-01
  • 通信作者: 魏学功

Influence on the contents of interleukin-8 and tumor necrosis factor-α in pulmonary alveoli of neonatal rats exposed to hyperoxia

Fangfang Li1, Xuegong Wei1(), Xia Wang1, Sucan Han1, Chuanhou Zhang1, Xianjuan Zhang1, Li Li1   

  1. 1. Department of Obstetrics, Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China
  • Received:2015-09-11 Revised:2016-03-01 Published:2016-04-01
  • Corresponding author: Xuegong Wei
  • About author:
    Corresponding author: Wei Xuegong, Email:
引用本文:

李芳芳, 魏学功, 王霞, 韩素灿, 张传厚, 张先娟, 李莉. 高氧暴露对新生SD大鼠肺泡内白细胞介素-8及肿瘤坏死因子-α含量的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2016, 12(02): 179-183.

Fangfang Li, Xuegong Wei, Xia Wang, Sucan Han, Chuanhou Zhang, Xianjuan Zhang, Li Li. Influence on the contents of interleukin-8 and tumor necrosis factor-α in pulmonary alveoli of neonatal rats exposed to hyperoxia[J/OL]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2016, 12(02): 179-183.

目的

探讨新生SD大鼠高氧暴露后肺泡内白细胞介素(IL)-8及肿瘤坏死因子(TNF)-α的含量变化。

方法

选择100只生后24 h的足月、健康SD大鼠为研究对象,按照随机数字表法,将其分为高氧组(n=50)及空气组(n=50)。高氧组大鼠持续吸入浓度≥95%的氧气,空气组大鼠置于空气中,并于给氧后第1、3、6、10、14天,每组每次各取10只大鼠进行肺泡灌洗,应用双抗体夹心酶联免疫吸附测定(ELISA)法检测肺泡灌洗液中IL-8及TNF-α含量。统计学比较两组新生SD大鼠肺泡灌洗液中IL-8及TNF-α含量差异,以及高氧组大鼠上述不同时间点IL-8及TNF-α含量差异。两组大鼠性别构成比及出生体重比较,差异无统计学意义(P>0.05)。实验过程中对动物的处置符合动物伦理学标准。

结果

①高氧组大鼠在高氧暴露第14天出现生长迟缓,呆滞,体重不增,呼吸浅快,口唇发绀等不良表现。②高氧组新生SD大鼠第3、6、10、14天肺泡灌洗液中IL-8含量较空气组高[(262.4±12.5)×10-15 g/L vs (94.0±12.5)×10-15 g/L,(374.1±14.8)×10-15 g/L vs (94.8±7.2)×10-15 g/L,(345.7±17.5)×10-15 g/L vs (94.5±4.3)×10-15 g/L,(295.5±26.6)×10-15 g/L vs (95.6±7.5)×10-15 g/L],且差异有统计学意义(t=36.909、58.033、43.981、22.878,P<0.05);高氧组新生SD大鼠第1、3、6、10、14天肺泡灌洗液中TNF-α含量较空气组高[(43.0±4.5)×10-15 g/L vs (29.9±1.7)×10-15 g/L,(59.3±7.0)×10-15 g/L vs (33.3±4.1)×10-15 g/L,(55.1±7.7)×10-15 g/L vs (31.1±2.5)×10-15 g/L,(43.2±5.1)×10-15 g/L vs (31.2±3.4)×10-15 g/L,(34.4±3.8)×10-15 g/L vs (30.7±2.8)×10-15 g/L],且差异有统计学意义(t=-6.287、-10.190、-7.358、-2.508、-4.516,P<0.05)。③高氧组新生SD大鼠肺泡灌洗液中IL-8含量于第6天均分别较第1、3、10、14天高(t=-50.812、-18.265、-3.910、-8.170,P<0.05),第10天较第14天高(t=-4.987,P<0.05),且差异均有统计学意义;高氧组新生SD大鼠肺泡灌洗液中TNF-α含量于第3天均分别较第1、6、10、14天高(t=-6.209、-3.719、-5.900、-9.974,P<0.05),第6天及第10天分别较第14天高(t=-4.416、4.732,P<0.05),且差异均有统计学意义。

结论

IL-8和TNF-α可能参与新生SD大鼠高氧肺损伤的早期炎症反应。

Objective

To explore the variation of interleukin(IL)-8 and tumor necrosis factor(TNF)-α contents in pulmonary alveoli of neonatal SD rats with hyperoxia exposed.

Methods

A total of 100 Sprague-Dawley(SD) rats which were healthy and 24 h after birth, were chosen as study objects. They were randomly divided into hyperxia group and air group, and 50 rats in each. Neonatal SD rats in hyperxia group were exposed to the oxygen concentration over or equal to 95%, while neonatal SD rats in air group were raised normally in air. Ten neonatal SD rats in each group were sacrificed at the 1st, 3rd, 6th, 10th and 14th day after oxygen expose, and underwent alveolar wash. The contents of IL-8 and TNF-α in the bronchoalveolar lavage fluid were detected by double-antibody sandwich enzyme-linked immunosorbent assay (ELISA). The differences of IL-8 and TNF-α contents in the bronchoalveolar lavage fluid between two groups of neonatal SD rats, and the differences of IL-8 and TNF-α contents among different time points above mentioned in hyperxia group were statistically compared.There were no significant differences between two groups of neonatal SD rats in gender constituent ratio and birth weight (P>0.05). The disposition of the animals in experimental process was in accordance with the ethical standard of animals.

Results

①Neonatal SD rats in hyperxia group had some bad performances on 14th day of hyperoxia expose, such as growth retardation, sluggishness, weight gain stopped, rapid and shallow breathing and cyanosis of oral lips, etc.. ②The contents of IL-8 in the bronchoalveolar lavage fluid of neonatal SD rats on 3rd, 6th, 10th, 14th days in hyperxia group were higher than those of air group[(262.4±12.5)×10-15 g/L vs (94.0±12.5)×10-15 g/L, (374.1±14.8)×10-15 g/L vs (94.8±7.2)×10-15 g/L, (345.7±17.5)×10-15 g/L vs (94.5±4.3)×10-15 g/L, (295.5±26.6)×10-15 g/L vs (95.6±7.5)×10-15 g/L], and the differences were statistically significant(t=36.909, 58.033, 43.981, 22.878; P<0.05). The contents of TNF-α in the bronchoalveolar lavage fluid of neonatal SD rats on 1st, 3rd, 6th, 10th, 14th days in hyperxia group were higher than those of air group[(43.0±4.5)×10-15 g/L vs (29.9±1.7)×10-15 g/L, (59.3±7.0)×10-15 g/L vs (33.3±4.1)×10-15 g/L, (55.1±7.7)×10-15 g/L vs (31.1±2.5)×10-15 g/L, (43.2±5.1)×10-15 g/L vs (31.2±3.4)×10-15 g/L, (34.4±3.8)×10-15 g/L vs (30.7±2.8)×10-15 g/L], and the differences were statistically significant(t=-6.287, -10.190, -7.358, -2.508, -4.516; P<0.05). ③The IL-8 content in bronchoalveolar lavage fluid of neonatal SD rats on 6th day in hyperxia group was higher than that of 1st, 3rd, 10th, 14th day, respectively(t=-50.812, -18.265, -3.910, -8.170; P<0.05), that of 10th day was higher than that of 14th day(t=-4.987, P<0.05), and all the differences above were statistically significant. The TNF-α content in bronchoalveolar lavage fluid of neonatal SD rats on 3rd day in hyperxia group was higher than that of 1st, 6th, 10th, 14th day, respectively(t=-6.209, -3.719, -5.900, -9.974; P<0.05), those of 6th and 10th days were both higher than that of 14th day(t=-4.416, 4.732; P<0.05), and all the differences above were statistically significant.

Conclusions

The IL-8 and TNF-α may participate in the prophase inflammatory reaction when hyperoxia-induced lung injury occurred in neonatal SD rats.

表1 两组新生SD大鼠肺泡灌洗液中IL-8含量及高氧组不同时间点IL-8含量比较(×10-15 g/L,±s)
表2 两组新生SD大鼠肺泡灌洗液中TNF-α含量及高氧组不同时间点TNF-α含量比较(×10-15 g/L,±s)
1
Nagato AC, Bezerra FS, Lanzetti M, et al. Time course of inflammation, oxidative stress and tissue damage induced by hyperoxia in mouse lungs[J]. Int J Exp Pathol,2012,93(4): 269-278.
2
Fahy JV. Eosinophilic and neutrophilic inflammation in asthma: insights from clinical studies[J].Proc Am Thorac Soc,2009,6(3):256-259.
3
Papoff P, Cerasaro C, Caresta E,et al.Current strategies for treating infants with severe bronchopulmonary dysplasia[J].J Matern Fetal Neonatal Med,2012,25(Suppl 3):15-20.
4
张华,刘漫君.支气管肺发育不良的分子水平及发病机制的研究进展[J].医学综述,2013,19(12):2121-2123.
5
Hayes D Jr, Feola DJ, Murphy BS, et al. Pathogenesis of bronchopulmonary dysplasia[J]. Respiration, 2010, 79(5): 425-436.
6
Özdemir ÖM, Gözkeser E, Bir F,et al.The effects of resveratrol on hyperoxia-induced lung ingury in neonatal rats[J].Pediatr Neonatol,2014,55(5):352-357.
7
Chang YS, Choi SJ, Sung DK, et al. Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells dose-dependently attenuates hyperoxia-induced lung injury in neonatal rats[J]. Cell Transplant, 2011, 20(11-12): 1843-1854.
8
Chang YS, Oh W, Choi SJ, et al.Human umbilical cord blood-derived mesenchymal stem cells attenuate hyperoxia-induced lung injury in neonatal rats[J]. Cell Transplant, 2009, 18(8): 869-886.
9
Bry K, Hogmalm A, Bäckström E. Mechanisms of inflammatory lung ingury in the neonate: lessons from a transgenic mouse model of bronchopulmonary dysplasia[J]. Semin Perinatol, 2010, 34(3): 211-221.
10
Steer JH, Mann TS, Lo SZ, et al. Early induction of uncoupling protein-2 in pulmonary macrophages in hyperoxia-associated lung injury[J]. Inhal Toxicol, 2013, 25(9): 544-552.
11
Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling[J]. Cell Res, 2011, 21(1): 103-115.
12
Gore A, Muralidhar M, Espey MG, et al. Hyperoxia sensing:from molecular mechanisms to significance in disease[J]. J Immunotoxicol, 2010, 7(4): 239-254.
13
Perl M, Lomas-Neira J, Venet F, et al. Pathogenesis of indirect(secondary) acute lung injury[J]. Expert Rev Respir Med, 2011, 5(1): 115-126.
14
Köksal N, Kayik B, Cetinkaya M, et al.Value of serum and bronchoalveolar fluid lavage pro-and anti-inflammatory cytokine levels for predicting bronchopulmonary dysplasia in premature infants[J]. Eur Cytokine Netw, 2012, 23(2): 29-35.
15
Ozdemir R, Yurttutan S, Talim B,et al.Colchicine protects against hyperoxic lung injury in neonatal rats[J]. Neonatology, 2012, 102(4): 265-269.
[1] 李璐璐, 马利红, 金佳佳, 谷伟. 干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(02): 97-103.
[2] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[3] 张敏龙, 杨翠平, 王博, 崔云杰, 金发光. MiR-200b-3p 通过抑制HIF-1α 表达减轻海水吸入诱导的肺水肿作用及机制[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 696-700.
[4] 井发红, 李丽娜, 高婷, 高艳梅, 杨楠, 李卓, 慕玉东. 肺癌立体定向放疗血清SAP 和MMPs 表达及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 707-713.
[5] 张桂萍, 丘勇林, 湛绮婷, 孙乐栋. 晚期非小细胞肺癌血清Ape1/Ref-1对放射性肺损伤发生的预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 519-523.
[6] 廖江荣, 吴秀琳, 陈光春, 郭亮, 吕慈, 蔡俊, 陈夕. 急性主动脉夹层并发急性肺损伤的研究新进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 488-492.
[7] 谢开晶, 白伟志, 王震, 李婷, 邵世锋, 王耀丽. 严重爆炸伤单中心重症的监护与救治[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 201-206.
[8] 李玉娟, 艾芳, 熊欢庆, 陈键, 刘刚, 李志超, 金发光. "丹蛇"组方对小鼠急性肺损伤的治疗作用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 171-177.
[9] 顾晓凌, 吴冠楠, 宋勇. 核因子E2相关因子2(Nrf2)与铁死亡在脓毒症相关急性肺损伤中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 324-328.
[10] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[11] 汤畅通, 王永楠, 王诗筌. 颅脑外伤后阵发性交感神经兴奋患者的药物治疗效果分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 233-237.
[12] 刘婷, 杨少康, 陈亿霏, 刘悦, 潘纯. 气道闭合的监测在机械通气中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 394-398.
[13] 孙晓桐, 何怀武. 非对称性肺损伤的诊疗进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 287-291.
[14] 杨卫东, 周威, 向洪涛. 慢性萎缩性胃炎患者幽门螺杆菌感染与炎性细胞因子及病理特征的关系[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 459-464.
[15] 刘建, 王文珠, 王倩. 老年髋部骨折术后肺损伤现状调查分析及影响因素研究[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 260-264.
阅读次数
全文


摘要