切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2015, Vol. 11 ›› Issue (4) : 539 -542. doi: 10.3877/cma.j.issn.1673-5250.2015.04.022

所属专题: 文献

综述

辅助性T细胞17/调节性T细胞免疫失衡与子痫前期相关性的研究进展
谢玉珍, 何青, 贺芳, 李映桃*()   
  1. 510150 广州医科大学附属第三医院妇产科
  • 收稿日期:2015-01-08 修回日期:2015-06-19 出版日期:2015-08-01
  • 通信作者: 李映桃

Research progress of relationship between helper T cell 17/regulatory T cell immune imbalance and pre-eclampsia

Yuzhen Xie, Qing He, Fang He, Yingtao Li*()   

  1. Department of Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
  • Received:2015-01-08 Revised:2015-06-19 Published:2015-08-01
  • Corresponding author: Yingtao Li
引用本文:

谢玉珍, 何青, 贺芳, 李映桃. 辅助性T细胞17/调节性T细胞免疫失衡与子痫前期相关性的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2015, 11(4): 539-542.

Yuzhen Xie, Qing He, Fang He, Yingtao Li. Research progress of relationship between helper T cell 17/regulatory T cell immune imbalance and pre-eclampsia[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2015, 11(4): 539-542.

子痫前期(PE)是妊娠期特发性疾病,目前我国PE发病率为9.4%,其病因和发病机制尚未阐明。近年来研究结果提示PE的发生、发展与母-胎免疫耐受失衡有关,母体免疫系统不能识别胎儿的同种异型抗原,导致异常免疫系统激活,从而可能在PE的发病机制中起主导作用。PE患者存在辅助性T细胞(Th)1/Th2失衡,Th17/调节性T细胞(regulatory T cell,Treg)免疫失衡也参与其中,并且向Th17免疫偏移。笔者拟就近年来Th17/Treg免疫失衡与PE相关性的最新研究进展进行综述如下。

Pre-eclampsia (PE) is a common obstetric syndrome affecting about 9.4% of pregnant women in our country. The etiology and pathogenesis of PE are not fully understood. Some literatures found that the onset of PE was an imbalance of maternal-fetal immune tolerance. Maternal immune system can not recognize the fetal alloantigen and the activation of cell-mediated immunity which may play a role in the etiology of PE. PE has an immune imbalance of helper T cell (Th)1/Th2. Recent data suggest that PE is a Th17/regulatory T cell (Treg) immune imbalance with a predominance of Th17 immunity. The latest research progress about relationship between Th17/Treg immune imbalance and PE will be reviewed.

图1 PE患者Th17/Treg免疫失衡机制示意图
[1]
孔北华. 妇产科学[M].北京:高等教育出版社,2005: 105–114.
[2]
Saito S. Th17 cells and regulatory T cells: new light on pathophysiology of preeclampsia[J]. Immunol Cell Biol, 2010, 88(6): 615–617.
[3]
Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3): 1151–1164.
[4]
Paust S, Cantor H. Regulatory T cells and autoimmune disease[J]. Immunol Rev, 2005, 204: 195–207.
[5]
von Boehmer H. Mechanisms of suppression by suppressor T cells[J]. Nat Immunol, 2005, 6(4): 338–344.
[6]
Saito S, Nakashima A, Shima T, et al. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy[J]. Am J Reprod Immunol, 2010, 63(6): 601–610.
[7]
Ruocco MG, Chaouat G, Florez L, et al. Regulatory T-cells in pregnancy: historical perspective, state of the art, and burning questions[J]. Front Immunol, 2014, 5: 389.
[8]
Stephens LA, Mottet C, Mason D, et al. Human CD4(+)CD25(+) thymocytes and peripheral T cells have immune suppressive activity in vitro[J]. Eur J Immunol, 2001, 31(4): 1247–1254.
[9]
Zheng Y, Josefowicz SZ, Kas A, et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells[J]. Nature, 2007, 445(7130): 936–940.
[10]
Somerset DA, Zheng Y, Kilby MD, et al. Normal human pregnancy is associated with an elevation in the immune suppressive CD25 CD4 regulatory T-cell subset[J]. Immunology, 2004, 112(1): 38–43.
[11]
Prins JR, Boelens HM, Heimweg J, et al. Preeclampsia is associated with lower percentages of regulatory T cells in maternal blood[J]. Hypertens Pregnancy, 2009, 28(3): 300–311.
[12]
Sasaki Y, Darmochwal-Kolarz D, Suzuki D, et al. Proportion of peripheral blood and decidual CD4 CD25bright regulatory T cells in pre-eclampsia[J]. Clin Exp Immunol, 2007, 149(1): 139–145.
[13]
盛佳佳.调控Th17细胞和Treg细胞通路对子痫前期的影响[D].合肥:安徽医科大学,2012.
[14]
Santner-Nanan B, Peek MJ, Khanam R, et al. Systemic increase in the ratio between Foxp3 and IL-17-producing CD4 T cells in healthy pregnancy but not in preeclampsia[J]. J Immunol, 2009, 183(11): 7023–7030.
[15]
Weaver CT, Harrington LE, Mangan PR, et al. Th17: an effector CD4 T cell lineage with regulatory T cell ties[J]. Immunity, 2006, 24(6): 677–688.
[16]
Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells[J]. Nature, 2006, 441(7090): 235–238.
[17]
Levine RJ, Lam C, Qian C, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia[J]. N Engl J Med, 2006, 355(10): 992–1005.
[18]
Luppi P, Deloia JA. Monocytes of preeclamptic women spontaneously synthesize pro-inflammatory cytokines[J]. Clin Immunol, 2006, 118(2-3): 268–275.
[19]
Nakae S, Iwakura Y, Suto H, et al. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17[J]. J Leukoc Biol, 2007, 81(5): 1258–1268.
[20]
Fu B, Li X, Sun R, et al. Natural killer cells promote immune tolerance by regulating inflammatory Th17 cells at the human maternal-fetal interface[J]. Proc Natl Acad Sci U S A, 2013, 110(3): E231–E240.
[21]
魏志霞,杨海澜,韩方. Foxp3和RORγt基因在子痫前期患者外周血单个核细胞中的表达[J].中华妇产科杂志2013, 48(3): 204–206.
[22]
Toldi G, Rigó Jr, Stenczer B, et al. Increased prevalence of IL-17-producing peripheral blood lymphocytes in pre-eclampsia[J]. Am J Reprod Immunol, 2011, 66(3): 223–229.
[23]
Darmochwa-Kolarz D, Oleszczuk J. The critical role of Th17 cells, Treg cells and co-stimulatory molecules in the development of pre-eclampsia[J]. Dev Period Med, 2014, 18(2): 141–147.
[24]
Schumacher A, Wafula PO, Teles A, et al. Blockage of heme oxygenase-1 abrogates the protective effect of regulatory T cells on murine pregnancy and promotes the maturation of dendritic cells[J]. PLoS One, 2012, 7(8): e42301.
[25]
Won HY, Sohn JH, Min HJ, et al. Glutathione peroxidase 1 deficiency attenuates allergen-induced airway inflammation by suppressing Th2 and Th17 cell development[J]. Antioxid Redox Signal, 2010, 13(5): 575–587.
[26]
郭艳艳,马玉燕,张艳慧,等. Th17/Treg平衡与正常妊娠及子痈前期关系的研究[J].现代妇产科进展2011, 20(12): 936–939.
[27]
Darmochwal-Kolarz D, Kludka-Sternik M, Tabarkiewicz J, et al. The predominance of Th17 lymphocytes and decreased number and function of Treg cells in preeclampsia[J]. J Reprod Immunol, 2012, 93(2): 75–81.
[1] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[2] 程慧, 李妍雨, 张蓓, 成杰, 张艳玲. 微小RNA-195靶向趋化因子5抑制滋养细胞增殖、迁移和侵袭及其机制研究[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 165-174.
[3] 袁瑞, 胡文佳, 桂希恩, 严亚军, 冯玲, 柯亨宁, 熊勇, 杨蓉蓉. 淋巴细胞精细分型检测在人类免疫缺陷病毒感染者/获得性免疫缺陷综合征患者中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 84-91.
[4] 崔键, 戴庆. 基于肝囊型包虫病所致过敏反应模型研究Treg细胞数量比例与过敏反应的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 427-430.
[5] 张原, 李小龙, 王亚鹏. 胰腺癌中ANGPTL2蛋白与免疫抑制细胞浸润的关系及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 145-148.
[6] 陈双, 李莲, 彭余, 杨再林. T淋巴细胞及细胞因子在预测肺炎重症转化中的临床意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 750-753.
[7] 李玲, 于艳艳, 王玉杰, 赵凯. 毛细支气管炎患儿血清25(OH)D水平与Th17/Treg平衡的关系[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 718-720.
[8] 刘泽, 郝言, 赵铎, 徐辉. 复方甘草酸苷对小儿哮喘T淋巴细胞及NK细胞的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 97-99.
[9] 泽仁尼玛, 杨建蓉, 李明琴, 陈颖. 阿莫西林/克拉维酸钾对肺结核患者淋巴细胞亚群CD4水平的意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 61-63.
[10] 高超, 巢杰, 邱海波. T-bet:脓毒症免疫失衡中Th17细胞的新型调节分子[J]. 中华重症医学电子杂志, 2023, 09(03): 280-285.
[11] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[12] 刘懿, 潘敏, 陈尧. 卢帕他定与依巴斯汀联合治疗慢性荨麻疹的效果及对补体水平和T淋巴细胞的影响[J]. 中华临床医师杂志(电子版), 2023, 17(02): 189-194.
[13] 韩永清, 饶敏超, 傅峰, 黄开荣. 参芪十一味颗粒联合FOLFOX4方案化疗对晚期结直肠癌患者的近期疗效及其对血清IL-35、IL-37和T淋巴细胞亚群的影响[J]. 中华临床医师杂志(电子版), 2022, 16(05): 400-404.
[14] 黄山, 吕松琴, 张娟, 徐丽萍, 李佳能, 李晓非. 云南地区新发艾滋病合并其他病原微生物感染患者外周血T淋巴细胞亚群分布特征初探[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 16-20.
[15] 范茹, 刘宇清, 胡晓榕, 王轶奇, 张芬, 岑星, 卜玉洁, 陈俊伟. 系统性红斑狼疮患者长链非编码RNA表达变化及其与CD8+T细胞相关性研究[J]. 中华诊断学电子杂志, 2023, 11(03): 184-189.
阅读次数
全文


摘要