切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2013, Vol. 09 ›› Issue (03) : 344 -348. doi: 10.3877/cma.j.issn.1673-5250.2013.03.014

所属专题: 文献

论著

血清一氧化氮与肾小管上皮细胞Bax在肾缺血再灌注损伤大鼠中的表达及意义
岳屹囡1,*,*(), 孙绪丁1   
  1. 1. 272000 山东济宁,山东省济宁市第一人民医院儿科
  • 收稿日期:2013-01-11 修回日期:2013-04-20 出版日期:2013-06-01
  • 通信作者: 岳屹囡

Significances and Expressions of Serum Nitric Oxide and Bax in Renal Tubular Epithelia in Rats With Renal Ischemia Reperfusion

Yi-nan YUE1(), Xu-ding SUN1   

  1. 1. Department of Paediatrics, Shandong Jining No. 1 People's Hospital, Jining 272000, Shandong Province, China
  • Received:2013-01-11 Revised:2013-04-20 Published:2013-06-01
  • Corresponding author: Yi-nan YUE
  • About author:
    (Corresponding author: YUE Yi-nan, Email: )
引用本文:

岳屹囡, 孙绪丁. 血清一氧化氮与肾小管上皮细胞Bax在肾缺血再灌注损伤大鼠中的表达及意义[J]. 中华妇幼临床医学杂志(电子版), 2013, 09(03): 344-348.

Yi-nan YUE, Xu-ding SUN. Significances and Expressions of Serum Nitric Oxide and Bax in Renal Tubular Epithelia in Rats With Renal Ischemia Reperfusion[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2013, 09(03): 344-348.

目的

探讨血清一氧化氮(NO)的变化和肾小管上皮细胞Bax在大鼠肾缺血再灌注(IR)损伤中表达的意义。

方法

将Sprague-Dawley大鼠48只随机分为IR组(n=40,并根据IR时间,进一步分为IR 2 h组,IR 6 h组,IR 12 h组,IR 24 h组,IR 72 h组,每组8只)和对照组(n=8)。用无损伤动脉夹钳夹大鼠双侧肾蒂45 min制成肾IR损伤模型。对照组只暴露双肾,不钳夹肾蒂。观察IR后2 h,6 h,12 h,24 h和72 h血清NO水平变化和以上各时间点肾小管上皮细胞Bax及细胞凋亡的改变。

结果

对照组血清NO水平较IR组低,IR 2 h组NO水平开始升高[(90.470±10.222) μmol/L],IR 12 h组达最高峰[(137.864±22.317) μmol/L],之后逐渐下降,IR 72 h组尚未降至正常水平。IR 12 h组血清NO水平与对照组比较,差异有统计学意义(P<0.01)。IR组血清肌酐(Scr)水平较对照组明显升高,以IR 12 h组Scr水平达最高峰[(120.850±22.237) μmol/L],与对照组比较,差异有统计学意义(P<0.01)。对照组肾小管上皮细胞Bax(2.450±0.639)及细胞凋亡水平[(0.900±0.385)个/视野]较低,IR 2 h后各值均逐渐升高[15.400±3.474,(8.725±1.313)个/视野],12 h达峰值[69.025±6.550,(26.850±1.476)个/视野],IR 12 h肾组织病理改变最严重。

结论

IR后,血清NO及肾小管上皮细胞Bax水平增高,诱导肾小管上皮细胞凋亡。

Objective

To investigate the significance and expression of serum nitric oxide (NO) and Bax in renal tubular epithelia in rats with renal ischemia reperfusion (IR).

Methods

Forty-eight male Sprague-Dawley rats were randomly divided into IR group (n=40, further divided into IR 2 h group, IR 6 h group, IR 12 h group, IR 24 h group, IR 72 h group) and control group(n=8). Every group consisted of 8 rats. The rats of renal IR injury exposed to 45 min bilateral renal pedicle clamping. Rats in control group were exposed and their renal pedicles were not clamped. The change tendency of serum NO and Bax in renal tubular epithelia at IR 2 h, IR 6 h, IR 12 h, IR 24 h and IR 72 h were observed.

Results

The level of serum NO of rats in control group [(73.980±8.356) μmol/L] was lower than that in IR group, and the level of serum NO of rats in IR 12 h group was highest [(137.864±22.317) μmol/L], after that, the levels of serum NO were gradually decreased, and the level of serum NO of rats in IR 72 h group [(85.071±11.204) μmol/L] still did not reduce to normal level. The levels of serum creatinine (Scr) of rats in IR groups were obviously increased as compared with that in control group [(22.775±6.508) μmol/L] than that of IR group. The level of Scr of rats in IR 12 h group was the highest [(120.850±22.237) μmol/L]. The levels of Bax and apoptosis in renal tubular epithelia in rats in control group were lower [2.450±0.639, 0.900±0.385]. After IR 2 h, those were gradually increased, and the levels of Bax and apoptosis in renal tubular epithelia in IR 12 h group were the highest [69.025±6.550, 26.850±1.476]. The pathological lesions of nephridial tissue were most severe at IR 12 h.

Conclusions

The expression of serum NO and Bax pro-apoptotic protein in renal tubular epithelia were unregulated after IR, and that induced apoptosis.

表1 各组大鼠血清NO和Scr水平比较(μmol/L,±s)
Table 1 Comparison of expression level of serum NO and Scr between two groups(μmol/L,±s)
图1 对照组Bax表达(10×40)
Figure 1 The expression of Bax protein in control group
图2 IR 12 h组Bax表达(10×40)
Figure 2 The expression of Bax protein in renal ischemia reperfusion operation group for 12 h group
图3 对照组细胞凋亡(10×40)
Figure 3 Apoptotic cells in control group
图4 IR 12 h组细胞凋亡(10×40)
Figure 4 Apoptotic cells in renal ischemia reperfusion for 12 h group
表2 各组大鼠肾小管上皮细胞Bax和肾小管上皮细胞凋亡比较(±s)
Table 2 Comparison of renal tubular epithelial Bax and apoptotic positive cells between two groups (±s)
[1]
Glorie LL, Verhulst A, Matheeussen V, et al. DPP4 inhibition improves functional outcome after renal ischemia-reperfusion injury[J]. Am J Physiol Renal Physiol, 2012, 303(5):F681-688.
[2]
Lee HT, Park SW, Kim M, et al. Interleukin-11 protects against renal ischemia and reperfusion injury[J]. Am J Physiol Renal Physiol, 2012, 303(8):F1216-1224.
[3]
Park SW, Kim JY, Ham A, et al. A1 adenosine receptor allosteric enhancer PD-81723 protects against renal ischemia-reperfusion injury[J]. Am J Physiol Renal Physiol, 2012, 303(5):F721-732.
[4]
Li Y, Tong X, Maimaitiyiming H, et al. Overexpression of cGMP-dependent protein kinase Ⅰ (PKG-Ⅰ) attenuates ischemia-reperfusion-induced kidney injury[J]. Am J Physiol Renal Physiol, 2012, 302(5):F561-570.
[5]
Xu Y, Chen SL. Inhibitive effect of interleukin-4, -10 on cell apoptosis in rats with renal ischemic-reperfusion injury[J]. J Appl Clin Pediatr, 2007, 22(5):375-376.
[6]
Yang N, Luo M, Li R, et al. Blockage of JAK/STAT signalling attenuates renal ischaemia-reperfusion injury in rat[J]. Nephrol Dial Transplant, 2008, 23(1):91-100.
[7]
Bylander J, Li Q, Ramesh G, et al. Targeted disruption of the meprin metalloproteinase beta gene protects against renal ischemia-reperfusion injury in mice[J]. Am J Physiol Renal Physiol, 2008, 294(3):F480-490.
[8]
Bae EH, Lee KS, Lee J, et al. Effects of alpha-lipoic acid on ischemia-reperfusion-induced renal dysfunction in rats[J]. Am J Physiol Renal Physiol, 2008, 294(1):F272-280.
[9]
Kazi A, Sun J, Doi K, et al. The BH3 alpha-helical mimic BH3-M6 disrupts Bcl-X(L), Bcl-2, and MCL-1 protein-protein interactions with Bax, Bak, Bad, or Bim and induces apoptosis in a Bax- and Bim-dependent manner[J]. J Biol Chem, 2011, 286(11):9382-9392.
[10]
Berens HM, Tyler KL. The proapoptotic Bcl-2 protein Bax plays an important role in the pathogenesis of reovirus encephalitis[J]. J Virol, 2011, 85(8):3858-3871.
[11]
Zeng L, Li T, Xu DC, et al. Death receptor 6 induces apoptosis not through type Ⅰ or type Ⅱ pathways, but via a unique mitochondria-dependent pathway by interacting with Bax protein[J]. J Biol Chem, 2012, 287(34):29125-29133.
[12]
Whelan RS, Konstantinidis K, Wei AC, et al. Bax regulates primary necrosis through mitochondrial dynamics[J]. Proc Natl Acad Sci U S A, 2012, 109(17):6566-6571.
[13]
Yue YN, Jiang HY, Dong MH, et al. Effects of hepatocyte growth-promoting factor on Bcl-2 and Bax expression in kidney of rats with renal ischemia reperfusion injury[J/CD]. Chin J Obstet Gynecol Pediatr: Electron Ed, 2007, 3(4):216-219.
[14]
Gabbai FB, Hammond TC, Thomson SC, et al. Effect of acute iNOS inhibition on glomerular function in tubulointerstitial nephritis[J]. Kidney Int, 2002, 61(3):851-854.
[15]
Park JW, Park CH, Kim IJ, et al. Rho kinase inhibition by fasudil attenuates cyclosporine-induced kidney injury[J]. J Pharmacol Exp Ther, 2011, 338(1):271-279.
[16]
Popowich DA, Vavra AK, Walsh CP, et al. Regulation of reactive oxygen species by p53: Implications for nitric oxide-mediated apoptosis[J]. Am J Physiol Heart Circ Physiol, 2010, 298(6):2192-2200.
[17]
Maiti AK, Islam MT, Majid DSA. Enhancement of cellular NaKATPase activity in the mouse renal tissue in-vitro with low concentration of peroxynitrite[J]. FASEB J, 2012, 26:885.
[18]
Yang M, Camara AK, Wakim BT, et al. Tyrosine nitration of voltage-dependent anion channels in cardiac ischemia-reperfusion: Reduction by peroxynitrite scavenging[J]. Biochim Biophys Acta, 2012, 1817(11):2049-2059.
[19]
Du C, Guan Q, Diao H, et al. Nitric oxide induces apoptosis in renal tubular epithelial cells through activation of caspase-8[J]. Am J Physiol Renal Physiol, 2006, 290(5):F1044-1054.
[20]
Zhou X, Yuan D, Wang M, et al. H2O2-induced endothelial NO production contributes to vascular cell apoptosis and increased permeability in rat venules[J]. Am J Physiol Heart Circ Physiol, 2013, 304(1):82-93.
[21]
Grossini E, Molinari C, Pollesello P, et al. Levosimendan protection against kidney ischemia/reperfusion injuries in anesthetized pigs[J]. J Pharmacol Exp Ther, 2012, 342(2):376-388.
[1] 张卫平, 王婧玲, 刘志兴, 陈莉, 谌芳群. 肾透明细胞癌高帧频超声造影时间-强度曲线特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 916-922.
[2] 谢迎东, 孙帼, 徐超丽, 杨斌, 孙晖, 戴云. 超声造影定量评价不同生存期移植肾血流灌注的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 749-754.
[3] 李三祥, 李佳, 刘俊峰, 吕东晨, 方晖东, 谭朝晖, 刘杰, 潘佐, 乔建坤. 基于CT影像的三维重建成像技术在腹腔镜大肾上腺肿瘤切除术中的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 570-574.
[4] 赵佳晖, 王永兴, 彭涛, 李明川, 魏德超, 韩毅力, 侯铸, 姜永光, 罗勇. 后腹腔镜根治性肾切除手术时间延长和术中出血量增多的影响因素分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 575-580.
[5] 陈美仁, 戴逸骅, 张茹, 戴英波. "蛙泳"俯卧位在经皮肾镜术中的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 581-586.
[6] 龙卫兵, 刘晓冰, 易仁政, 邹德博, 蒋玉斌, 陈亮, 谢超群, 刘红叶, 粟周华, 张雄峰, 李麒麟. CT、B超预定位"三步法"经皮肾镜治疗上尿路结石[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 587-592.
[7] 张文涛, 陈俊明, 秦海生, 杨胜进, 余朝辉, 白冰, 王世洋, 段彩莲, 王震. 4.8 F可视肾镜在飞行人员肾脏小结石中的临床应用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 593-596.
[8] 汪帮琦, 陈波特, 林浩坚, 许晖阳, 王镇伟, 袁雪峰, 林康健, 邱晓拂. 经腹入路3D腹腔镜联合输尿管硬镜同期处理肾盂输尿管连接部梗阻并肾盏结石的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 597-600.
[9] 方钟进, 黄华生, 陈早庆, 郁兆存, 郑哲明, 谢永康, 陈仲宁, 邹演辉, 刘乾海, 陈镇宏. 负压组合式输尿管镜联合输尿管软镜与经皮肾镜治疗复杂性肾结石的比较[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 601-604.
[10] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[11] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[12] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[13] 张曦才, 曹先德. 经皮肾镜取石术治疗无积水肾结石中皮肾通道建立的应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 911-915.
[14] 张曦才, 曹先德, 高建萍, 沈大庆, 曹现祥, 郭诗杰, 李凤岳, 肖琳. 免人工肾积水在超声引导经皮肾镜取石术中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(07): 798-803.
[15] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
阅读次数
全文


摘要