切换至 "中华医学电子期刊资源库"

中华妇幼临床医学杂志(电子版) ›› 2011, Vol. 07 ›› Issue (04) : 362 -365. doi: 10.3877/cma.j.issn.1673-5250.2011.04.023

综述

吲哚胺2,3二氧化酶在造血干细胞移植的研究进展
叶启翔   
  1. 510120 广东广州,中山大学孙逸仙纪念医院儿科
  • 出版日期:2011-08-01

Research Progress of Indoleamine 2, 3-Dioxygenase on Hematopoietic Stem Cell Transplantation

Qi-xiang YE   

  1. Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
  • Published:2011-08-01
  • Supported by:
    * Project No. 30872383, supported by the National Natural Science Foundation of China; project No.20090171110064, supported by the Doctor Degree Foundation of Technology Ministry of China.
引用本文:

叶启翔. 吲哚胺2,3二氧化酶在造血干细胞移植的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2011, 07(04): 362-365.

Qi-xiang YE. Research Progress of Indoleamine 2, 3-Dioxygenase on Hematopoietic Stem Cell Transplantation[J]. Chinese Journal of Obstetrics & Gynecology and Pediatrics(Electronic Edition), 2011, 07(04): 362-365.

吲哚胺2,3二氧化酶(indoleamine 2,3-dioxygenase,IDO)通过诱导色氨酸分解,调节树突状细胞(dendritic cells, DCs)及T细胞等途径实现造血干细胞移植(hematopoietic stem cell transplantation,HSCT)后诱导T细胞免疫耐受,防止移植物抗宿主病(graft versus host disease,GVHD)的发生及提高移植物存活率。调控吲哚胺2,3二氧化酶已成为提高造血干细胞移植成功率的治疗靶点。

Indoleamine 2, 3-dioxygenase (IDO)is found could induce T cells immunity tolerance by inducing tryptophan decompose, regulating dendritic cells and T cells and relevant molecular mechanism to prevent graft versus host disease(GVHD)and improve the survive rate of graft. It has became a therapeutic target to improve the success rate of hematopoietic stem cell transplantation(HSCT).

1 Munn DH, Sharma MD, Baban B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2, 3-dioxygenase [J]. Immunity, 2005, 22(5): 633-642.
2 Fallarino F, Grohmann U, Vacca C, et al. T cell apoptosis by tryptophan catabolism [J]. Cell Death Differ, 2002, 9(10): 1069-1077.
3 Mellor AL, Munn DH. IDO expression by dendritic cells: Tolerance and tryptophan catabolism [J]. NatRev Immunol, 2004, 4: 762-774.
4 Uyttenhove C, Pilotte L, The'ate I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine2,3-dioxygenase [J]. Nat Med, 2003, 9: 1269-1274.
5 Curti A, Aluigi M, Pandolfi S, et al. Acute myeloid leukemia cells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase[J]. Leukemia. 2007, 21: 353-355.
6 Munn DH. Indoleamine 2, 3-dioxygenase, tumor-induced tolerance and counter-regulation [J]. Curr Opin Immunol, 2006, 18(2): 220-225.
7 Wood KJ, Sawitzki B. Interferon gamma: A crucial role in the function of induced regulatory T cells in vivo [J]. Trends Immunol, 2006, 27(4): 183-187.
8 King NJC, Thomas SR. Molecules in focus: Indoleamine 2, 3-dioxygenase [J]. Int J Biochem Cell Biol, 2007, 39(12): 2167-2172.
9 Bodaghi B, Goureau O, Zipeto D, et al. Role of IFN-gamma-induced indoleamine 2,3 dioxygenase and inducible nitric oxide synthase in the replication of human cytomegalovirus in retinal pigment epithelial cells [J]. J Immunol, 1999, 162(2): 957-964.
10 MacKenzie CR, Hadding U, Daubener W. Interferon-gamma-induced activation of indoleamine 2,3-dioxygenase in cord blood monocyte-derived macrophages inhibits the growth of group B streptococci [J]. J Infect Dis, 1998, 178(3): 875-878.
11 MacKenzie CR, Hucke C, Muller D,et al. Growth inhibition of multiresistant enterococci by interferon-gamma-activated human uro-epithelial cells [J]. J Med Microbiol, 1999, 48(10): 935-941.
12 Bozza S, Fallarino F, Pitzurra L, et al. A crucial role for tryptophan catabolism at the host/Candida albicans interface[J]. J Immunol, 2005, 174(5): 2910-2918.
13 Adams O, Besken K, Oberdorfer C, et al. Role of indoleamine-2,3-dioxygenase in alpha/beta and gamma interferon-mediated antiviral effects against herpes simplex virus infections [J]. J Virol, 2004, 78(5): 2632-2636.
14 Byrne GI, Lehmann LK, Landry GJ. Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells [J]. Infect Immunol, 1986, 53(2): 347-351.
15 MacKenzie CR, Worku D, Daubener W. Regulation of IDO-mediated bacteriostasis in macrophages:Role of antibiotics and anti-inflammatory agents [J]. Adv Exp Med Biol, 2003, 527: 67-76.
16 Mellor AL, Munn DH. Tryptophan catabolism and T-cell tolerance: Immunosuppression by starvation[J]? Immunol Today, 1999, 20(10): 469-473.
17 Potula R, Poluektova L, Knipe B, et al. Macrophages in an animal model of HIV-1 encephalitis[J]. Blood, 2005, 106(7): 2382-2390.
18 Hainz UB, Wekerle JT. Indoleamine 2, 3-dioxygenase in hematopoietic stem cell transplantation[J]. Curr Drug Metab, 2007, 8(3): 267-272.
19 Laurence JM, Wang C, Park ET, et al. Blocking indoleamine dioxygenase activity early after rat liver transplantation prevents long-term survival but does not cause acute rejection [J]. Transplantation, 2008, 85: 1357-1361.
20 Guillonneau C, Hill M, Hubert FX, et al. CD40Ig treatment results in allograft acceptance mediated by CD8CD45RCT cells, IFN-gamma, and indoleamine 2,3-dioxygenase[J]. J Clin Invest, 2007, 117: 1096-1106.
21 Cook CH, Bickerstaff AA, Wang JJ, et al. Spontaneous renal allograft acceptance associated with " regulatory" dendritic cells and IDO [J]. J Immunol, 2008, 180: 3103-3112.
22 Jasperson LK, Bucher C, Panoskaltsis-Mortari A, et al. Indoleamine 2, 3-dioxygenase is a critical regulator of acute graft-versus-host disease lethality [J]. Blood, 2008, 111: 3257-3265.
23 Hainz U, Obexer P, Winkler C. et al. Monocyte-mediated T-cell suppression and augmented monocyte tryptophan catabolism after human hematopoietic stem-cell transplantation [J]. Blood, 2005, 105(10): 4127-4134.
24 Steckel NK, Kuhn U, Beelen DW, et al. Indoleamine 2,3-dioxygenase expression in patients with acute graft-versus-host disease after allogeneic stem cell transplantation and in pregnant women: Association with the induction of allogeneic immune tolerance [J]? Scand J Immunol, 2003, 57(2): 185-191.
25 Munn DH, Mellor AL. IDO and tolerance to tumors [J]. Trends Mol Med, 2004, 10(1): 15-18.
26 Fallarino F, Grohmann U, Vacca C, et al. T cell apoptosis by tryptophan catabolism[J]. Cell Death Differ, 2002, 9(10): 1069-1077.
27 Lin H, Bolling SF, Linsley PS, et al, Long-term acceptance of major histocompatibility complex mismatched cardiac allografts induced by CTLA4-Ig plus donor-specific transfusion[J]. J Exp Med, 1993,178(5): 1801-1806.
28 Lenschow DJ, Zeng Y, Thistlethwaite JR, et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4-lg [J]. Science, 1992, 257(5071): 789-792.
29 Grohmann U, Orabona C, Fallarino F, et al. CTLA-4-Ig regulates tryptophan catabolism in vivo [J]. Nat Immunol, 2002, 3(11): 1097-1101.
30 Orabona C, Puccetti P, Vacca C, et al, Toward the identification of a tolerogenic signature in IDO-competent dendritic cells [J]. Blood, 2006, 107(7): 2846-2854.
31 Mellor AL, Baban B, Chandler P, et al. Cutting edge: Induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion [J]. J Immunol, 2003, 171(4): 1652-1655.
32 Hoffmann P, Boeld TJ, Piseshka B,et al. Immunomodulation after allogeneic bone marrow transplantation by CD4+CD25+regulatory T cells [J]. Microbes Infect, 2005, 7(7-8): 1066-1072.
33 Fallarino F, Grohmann U, You S, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype innaive T cells [J]. J Immunol, 2006, 176: 6752-6761.
34 Curti A, Pandolfi S, Valzasina B, et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25-into CD25+T regulatory cells[J]. Blood, 2007, 109: 2871-2877.
35 Fallarino F, Grohmann U, Hwang KW, et al, Modulation of tryptophan catabolism by regulatory T cells [J]. Nat Immunol, 2003, 4(12): 1206-1212.
[1] 陈帅, 刘文宾, 吴迪炯, 俞庆宏, 陈均法, 庄海峰, 胡致平, 武利强, 郑智茵, 沈建平, 叶宝东. 改良FAC预处理方案在不同供者类型行异基因造血干细胞移植治疗再生障碍性贫血中的疗效分析[J]. 中华危重症医学杂志(电子版), 2022, 15(04): 296-299.
[2] 崔键, 戴庆. 基于肝囊型包虫病所致过敏反应模型研究Treg细胞数量比例与过敏反应的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 427-430.
[3] 孔欣, 宋宝全, 刘吟, 张剑, 仇惠英, 吴德沛. 异基因造血干细胞移植并发难治性呃逆一例[J]. 中华移植杂志(电子版), 2023, 17(04): 253-255.
[4] 张修源, 吕军好, 陈大进. 2022年肾移植领域研究进展[J]. 中华移植杂志(电子版), 2023, 17(01): 32-35.
[5] 于长江, 赵敏杰, 龚建平. 库普弗细胞在肝移植中的作用研究进展[J]. 中华移植杂志(电子版), 2022, 16(05): 314-318.
[6] 赵爽, 马梁明, 朱秋娟, 贡蓉, 高志林, 田卫伟, 王涛. 不同预处理方案对重型再生障碍性贫血患者单倍体造血干细胞移植的疗效分析[J]. 中华移植杂志(电子版), 2022, 16(04): 224-230.
[7] 陈敏, 潘田中, 孙自敏. 祛铁治疗异基因造血干细胞移植术后三系植入不良一例[J]. 中华移植杂志(电子版), 2022, 16(03): 168-171.
[8] 赵晶, 丁淑怡, 周晓瑜, 章建丽, 许丽炜, 张力晨, 严佳丽, 程琼, 刘念, 金爱云. 异基因造血干细胞移植后并发慢性移植物抗宿主病患者生活质量变化及其影响因素分析[J]. 中华移植杂志(电子版), 2022, 16(03): 153-159.
[9] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[10] 李芸芸, 吴涛, 毛东锋, 鱼玲玲, 刘文慧. 轻型β-地中海贫血供者异基因造血干细胞移植治疗重型再生障碍性贫血1例[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 84-86.
[11] 苏春艳, 吴涛, 毛东锋, 刘文慧, 鱼玲玲, 白海. 异基因造血干细胞移植治疗急性混合细胞白血病后继发外周T细胞淋巴瘤1例[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 289-292.
[12] 韦远, 徐西占, 梁庆丰. 免疫性眼表疾病眼表菌群的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 55-59.
[13] 赵洁, 王岚, 杨红枚, 何屹, 袁红. 异基因造血干细胞移植后并发自身免疫性溶血性贫血患者产生类抗体血清学检测方法及输血策略[J]. 中华临床医师杂志(电子版), 2022, 16(05): 452-456.
[14] 徐丽, 张秋会, 张玲, 韩俊英, 马新娟, 黄雪丽. 心灵瑜伽和叙事护理对造血干细胞移植患者心理干预的研究[J]. 中华临床医师杂志(电子版), 2021, 15(09): 707-711.
[15] 张意钗, 黄楠, 梁晓丽, 林敏. 慢性乙型肝炎患者转氨酶与外周血中髓源性抑制细胞的关系研究[J]. 中华临床实验室管理电子杂志, 2022, 10(03): 142-146.
阅读次数
全文


摘要